Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Two Dimensional Nanoparticles/Nanozymes For Biosensing Augmented By Machine Learning, Nidhi Chintan Nandu Aug 2021

Two Dimensional Nanoparticles/Nanozymes For Biosensing Augmented By Machine Learning, Nidhi Chintan Nandu

Legacy Theses & Dissertations (2009 - 2024)

Biosensing is an ever-evolving field with many resources devoted towards new approaches in sensing and refining the existing methods. For a long time, such approaches involved use of state-of-the-art instruments and were often proved to be time consuming and expensive. Nanoparticles with their unique properties, inexpensive synthesis and ease of manipulation have found purpose in myriad fields including biosensing. Different nanoparticles based on their composition, morphology, dimensionality, and surface modifications have already gained foot hold in the biosensor ranks. The unique opto-electric properties due to the quantum effect in the nanoparticles have also made them one of the leading alternatives …


Electronic Structure And Dynamics Of Uranyl-Peroxide Species, Ethan T. Hare May 2021

Electronic Structure And Dynamics Of Uranyl-Peroxide Species, Ethan T. Hare

Honors Thesis

Uranyl-peroxide nanocapsules are a unique family of self-assembled actinide species. Uranyl ions rapidly self-assemble in basic peroxidic media through a myriad of reactions to coalesce into a single nanocapsule that includes both peroxide and hydroxide bridging groups between the uranyl moieties. A wide variety of capsules can be formed, and it has been proposed that square and pentagonal building blocks assemble prior to nanocapsule formation. We have studied the speciation of the pentagonal 2) uranyl-peroxide nanocapsule building blocks using density functional theory calculations. We predicted the most favorable speciation pathways for the self-assembly of the building blocks prior to cluster …


The Application Of Machine Learning In Analyzing Organic Compounds From Nmr Spectral Data, Nicole Maia Powell Jan 2021

The Application Of Machine Learning In Analyzing Organic Compounds From Nmr Spectral Data, Nicole Maia Powell

Senior Independent Study Theses

Nuclear magnetic resonance (NMR) is used in organic chemistry to identify unknown organic compounds. The data obtained from an NMR spectrometer are typically shown in the form of a spectrum, which is then analyzed by an analytical chemist. The action of analyzing a spectrum, especially one of a large and complex molecule, is a long and tedious process. In this project, Python is used to implement hierarchical clustering on NMR data obtained from an NMR spectrometer at the College of Wooster to explore its application in NMR analysis. MATLAB is used to build a decision tree from the same data, …


The Role Of Ammonia In Atmospheric New Particle Formation And Implications For Cloud Condensation Nuclei, Arshad Arjunan Nair Jan 2021

The Role Of Ammonia In Atmospheric New Particle Formation And Implications For Cloud Condensation Nuclei, Arshad Arjunan Nair

Legacy Theses & Dissertations (2009 - 2024)

Atmospheric ammonia has received recent attention due to (a) its increasing trend across various regions of the globe; (b) the associated direct and indirect (through PM2.5) effects on human health, the ecosystem, and climate; and (c) recent evidence of its role in significantly enhancing atmospheric new particle formation (NPF or nucleation) rates. The mechanisms behind nucleation in the atmosphere are not fully understood, although over the last decade there have been significant developments in our understanding. This dissertation aims at improving our understanding of atmospheric ammonia in the atmosphere, its spatiotemporal variability, its role in atmospheric new particle formation, and …


Information Architecture For A Chemical Modeling Knowledge Graph, Adam R. Luxon Jan 2021

Information Architecture For A Chemical Modeling Knowledge Graph, Adam R. Luxon

Theses and Dissertations

Machine learning models for chemical property predictions are high dimension design challenges spanning multiple disciplines. Free and open-source software libraries have streamlined the model implementation process, but the design complexity remains. In order better navigate and understand the machine learning design space, model information needs to be organized and contextualized. In this work, instances of chemical property models and their associated parameters were stored in a Neo4j property graph database. Machine learning model instances were created with permutations of dataset, learning algorithm, molecular featurization, data scaling, data splitting, hyperparameters, and hyperparameter optimization techniques. The resulting graph contains over 83,000 nodes …