Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Physical Sciences and Mathematics

The Application Of Transition Metal Sulfide Nanomaterials And Their Composite Nanomaterials In The Electrocatalytic Reduction Of Co2: A Review, Jason Parsons, Mataz Alcoutlabi Feb 2023

The Application Of Transition Metal Sulfide Nanomaterials And Their Composite Nanomaterials In The Electrocatalytic Reduction Of Co2: A Review, Jason Parsons, Mataz Alcoutlabi

Chemistry Faculty Publications and Presentations

Electrocatalysis has become an important topic in various areas of research, including chemical catalysis, environmental research, and chemical engineering. There have been a multitude of different catalysts used in the electrocatalytic reduction of CO2, which include large classes of materials such as transition metal oxide nanoparticles (TMO), transition metal nanoparticles (TMNp), carbon-based nanomaterials, and transition metal sulfides (TMS), as well as porphyrins and phthalocyanine molecules. This review is focused on the CO2 reduction reaction (CO2RR) and the main products produced using TMS nanomaterials. The main reaction products of the CO2RR include carbon monoxide (CO), formate/formic acid (HCOO−/HCOOH), methanol (CH3OH), ethanol …


Advances In Bioelectrode Design For Developing Electrochemical Biosensors, Nabajyoti Kalita, Sudarshan Gogoi, Shelley D. Minteer, Pranab Goswami Jan 2023

Advances In Bioelectrode Design For Developing Electrochemical Biosensors, Nabajyoti Kalita, Sudarshan Gogoi, Shelley D. Minteer, Pranab Goswami

Chemistry Faculty Research & Creative Works

The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the …


Understanding Rapid Intercalation Materials One Parameter At A Time, Wessel Van Den Bergh, Morgan Stefik Jun 2022

Understanding Rapid Intercalation Materials One Parameter At A Time, Wessel Van Den Bergh, Morgan Stefik

Faculty Publications

Demand for fast, energy-dense storage drives the research into nanoscale intercalation materials. Nanomaterials accelerate kinetics and can modify reaction path thermodynamics, intercalant solubility, and reversibility. The discovery of intercalation pseudocapacitance has opened questions about their fundamental operating principles. For example, are their capacitor-like current responses caused by storing energy in special near-surface regions or rather is this response due to normal intercalation limited by a slower faradaic surface-reaction? This review highlights emerging methods combining tailored nanomaterials with the process of elimination to disambiguate cause-and-effect at the nanoscale. This method is applied to multiple intercalation pseudocapacitive materials showing that the timescales …


Toxic Effects Of Silver Ions On Early Developing Zebrafish Embryos Distinguished From Silver Nanoparticles, Martha S. Johnson, Preeyaporn Songkiatisak, Pavan Kumar Cherukuri, Xiao-Hong Nancy Xu Jan 2022

Toxic Effects Of Silver Ions On Early Developing Zebrafish Embryos Distinguished From Silver Nanoparticles, Martha S. Johnson, Preeyaporn Songkiatisak, Pavan Kumar Cherukuri, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Currently, effects of nanomaterials and their ions, such as silver nanoparticles (Ag NPs) and silver ions (Ag+), on living organisms are not yet fully understood. One of the vital questions is whether nanomaterials have distinctive effects on living organisms from any other conventional chemicals (e.g., their ions), owing to their unique physicochemical properties. Due to various experimental protocols, studies of this crucial question have been inconclusive, which hinders rational design of effective regulatory guidelines for safely handling NPs. In this study, we chronically exposed early developing zebrafish embryos (cleavage-stage, 2 hours post-fertilization, hpf) to a dilution series of …


Optimization Of Simple And Inexpensive Paper-Based Assay For Lead, Kyla Dewittie, Sagar S. Patel Jan 2021

Optimization Of Simple And Inexpensive Paper-Based Assay For Lead, Kyla Dewittie, Sagar S. Patel

Summer Scholarship, Creative Arts and Research Projects (SCARP)

The Environmental Protection Agency (EPA) guidelines state that lead is a toxic metal that humans should not be exposed to in any amount. Due to corrosion of water pipes, lead can enter drinking water and be consumed by millions of people. As a group, we decided to reduce this issue by creating a simple and inexpensive paper-based test to detect lead(II) in water. The signal for this test results from encapsulating a phenanthroline-based probe in synthesized polymer nanoparticles. This test will display a colorimetric change, turning from yellow to bright orange if lead(II) is present in the water system. In …


Editorial: Carbon- And Inorganic-Based Nanostructures For Energy Applications, Federico Cesano, M. Jasim Uddin, Yuanbing Mao, Muhammad N. Huda Nov 2020

Editorial: Carbon- And Inorganic-Based Nanostructures For Energy Applications, Federico Cesano, M. Jasim Uddin, Yuanbing Mao, Muhammad N. Huda

Chemistry Faculty Publications and Presentations

No abstract provided.


Past, Present, And Future Of Waste Cooking Oil (Beyond Biofuel), Jihyun Kim Jan 2019

Past, Present, And Future Of Waste Cooking Oil (Beyond Biofuel), Jihyun Kim

Open Educational Resources

In this project, students in “General Chemistry” will explore the development of a facile, eco-friendly, and simple preparation method of fluorescent carbon dots (CDs) from a mixture of waste cooking oil and orange waste peels. Orange waste peels are one of the most underutilized bio-waste residues on earth, therefore, it would make better sense to utilize a mixture of the two wastes.


Nano To Global: Small Structures And Their Impact On Energy Markets, Kurt W. Kolasinski Nov 2018

Nano To Global: Small Structures And Their Impact On Energy Markets, Kurt W. Kolasinski

Sustainability Research & Practice Seminar Presentations

No abstract provided.


Imidazolium Ionic Liquids As Multifunctional Solvents, Ligands, And Reducing Agents For Noble Metal Deposition Onto Well-Defined Heterostructures And The Effect Of Synthetic History On Catalytic Performance, Michael Drake Ballentine Apr 2018

Imidazolium Ionic Liquids As Multifunctional Solvents, Ligands, And Reducing Agents For Noble Metal Deposition Onto Well-Defined Heterostructures And The Effect Of Synthetic History On Catalytic Performance, Michael Drake Ballentine

Masters Theses & Specialist Projects

1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM]Tf2N) was investigated as a multifunctional solvent, ligand, and reducing agent for platinum deposition onto well-defined CdSe@CdS nanorods. Platinum deposition was carried out thermally and photochemically using Pt(acac)2 as the metal precursor. Thermal deposition was investigated in [BMIM]Tf2N with and without addition of a sacrificial reducing agent, and product topology was compared with the products obtained from polyol reduction using 1,2-hexadecanediol, oleic acid, and oleylamine in diphenyl ether. Photochemically induced platinum deposition was carried out at room temperature in [BMIM]Tf2N, and product topology was compared with the photodeposition products obtained from a toluene dispersion. Thermal deposition of platinum …


Graphene Toxicity As A Double-Edged Sword Of Risks And Exploitable Opportunities: A Critical Analysis Of The Most Recent Trends And Developments, Yuri Volkov, Jennifer Mcintyre, Adriele Prina-Mello Jan 2017

Graphene Toxicity As A Double-Edged Sword Of Risks And Exploitable Opportunities: A Critical Analysis Of The Most Recent Trends And Developments, Yuri Volkov, Jennifer Mcintyre, Adriele Prina-Mello

Articles

Increased production volumes and a broadening application spectrum of graphene have raised concerns about its potential adverse effects on human health. Numerous reports demonstrate that graphene irrespective of its particular form exerts its effects on a widest range of living organisms, including prokaryotic bacteria and viruses, plants, micro-and macro-invertebrates, mammalian and human cells and whole animals in vivo. However, the available experimental data is frequently a matter of significant divergence and even controversy. Therefore, we provide here a critical analysis of the most recent (2015-2016) reports accumulated in the graphene-related materials biocompatibility and toxicology field in order to elucidate the …


Nanomaterials As Stationary Phases And Supports In Liquid Chromatography: A Review, Sandya Beeram, Elliott Rodriguez, Suresh Doddavenkatanna, Zhao Li, Allegra Pekarek, Darin Peev, Kathryn Goerl, Gianfranco Trovato, Tino Hofmann, David S. Hage Jan 2017

Nanomaterials As Stationary Phases And Supports In Liquid Chromatography: A Review, Sandya Beeram, Elliott Rodriguez, Suresh Doddavenkatanna, Zhao Li, Allegra Pekarek, Darin Peev, Kathryn Goerl, Gianfranco Trovato, Tino Hofmann, David S. Hage

Chemistry Department: Faculty Publications

The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent …


A Comparative Study Of Polyurethane Nanofibers With Different Patterns And Its Analogous Nanofibers Containing Mwcnts, Javier Macossay-Torres, Faheem A. Sheikh, Hassan Ahmad, Hern Kim, Gary L. Bowlin Sep 2015

A Comparative Study Of Polyurethane Nanofibers With Different Patterns And Its Analogous Nanofibers Containing Mwcnts, Javier Macossay-Torres, Faheem A. Sheikh, Hassan Ahmad, Hern Kim, Gary L. Bowlin

Chemistry Faculty Publications and Presentations

Tissue engineering is a multidisciplinary field that has evolved in various dimensions in recent years. One of the main aspects in this field is the proper adjustment and final compatibility of implants at the target site of surgery. For this purpose, it is desired to have the materials fabricated at the nanometer scale, since these dimensions will ultimately accelerate the fixation of implants at the cellular level. In this study, electrospun polyurethane nanofibers and their analogous nanofibers containing MWCNTs are introduced for tissue engineering applications. Since MWCNTs agglomerate to form bundles, a high intensity sonication procedure was used to disperse …


Nanostructured Cerium Oxide Based Catalysts: Synthesis, Physical Properties, And Catalytic Performance, Yunyun Zhou Aug 2015

Nanostructured Cerium Oxide Based Catalysts: Synthesis, Physical Properties, And Catalytic Performance, Yunyun Zhou

Department of Chemistry: Dissertations, Theses, and Student Research

Cerium oxide is an extensively used industrial catalyst with applications as diverse as catalysts for automobile exhaust, petroleum cracking and organic chemicals synthesis. The catalytic activity of cerium oxide is dependent upon its structural properties, especially the oxygen vacancy defects. While recent advances in characterization techniques have dramatically improved our understanding of cerium oxide functionality, many atomic features in cerium oxide contributing to the overall catalytic reactivity are not yet well-understood. This dissertation focuses on the structural studies of catalytically active cerium oxides with different compositions, phases and morphologies, and their utilizations to establish fundamental understandings of cerium oxide based …


A Simple Approach For Synthesis, Characterization And Bioactivity Of Bovine Bones To Fabricate The Polyurethane Nanofiber Containing Hydroxyapatite Nanoparticles, Faheem A. Sheikh, M. A. Kanjwal, Javier Macossay-Torres, N. A. M. Barakat, H. Y. Kim Jan 2012

A Simple Approach For Synthesis, Characterization And Bioactivity Of Bovine Bones To Fabricate The Polyurethane Nanofiber Containing Hydroxyapatite Nanoparticles, Faheem A. Sheikh, M. A. Kanjwal, Javier Macossay-Torres, N. A. M. Barakat, H. Y. Kim

Chemistry Faculty Publications and Presentations

In the present study, we had introduced polyurethane (PU) nanofibers that contain hydroxyapatite (HAp) nanoparticles (NPs) as a result of an electrospinning process. A simple method that does not depend on additional foreign chemicals had been employed to synthesize HAp NPs through the calcination of bovine bones. Typically, a colloidal gel consisting of HAp/PU had been electrospun to form nanofibers. In this communication, physiochemical aspects of prepared nanofibers were characterized by FE-SEM, TEM and TEM-EDS, which confirmed that nanofibers were well-oriented and good dispersion of HAp NPs, over the prepared nanofibers. Parameters, affecting the utilization of the prepared nanofibers in …


Sol-Gel Synthesis And Characterisation Of Novel Metal Oxide Nanomaterials For Photocatalytic Applications, Nicholas T. Nolan Sep 2010

Sol-Gel Synthesis And Characterisation Of Novel Metal Oxide Nanomaterials For Photocatalytic Applications, Nicholas T. Nolan

Doctoral

This thesis presents a study of the effect of chemical modifiers and dopants on both the anatase to rutile transformation and also the photocatalytic efficiency of semiconductor nanomaterials. The main focus of the work is based on the crystallisation and phase transformation of the widely investigated semiconductor metal oxide, titanium dioxide (TiO2) Of the three polymorphs associated with titanium dioxide, anatase is widely regarded as the most effective photocatalyst. Typically anatase will transform to rutile in the temperature range 600 – 700 °C however, modification of a titanium precursor with a chelating agent can result in extended transformation temperature. The …


Mesoporous Silica Microparticles Enhance The Cytotoxicity Of Anticancer Platinum Drugs, Zhimin Tao, Bonnie Toms, Jerry Goodisman, Tewodros Asefa Feb 2010

Mesoporous Silica Microparticles Enhance The Cytotoxicity Of Anticancer Platinum Drugs, Zhimin Tao, Bonnie Toms, Jerry Goodisman, Tewodros Asefa

Chemistry - All Scholarship

We report on the endocytosis and the time-dependent enhanced cytotoxicity of anticancer platinum drugs when the drugs are combined with (or loaded into) one of the two most common types of mesoporous silica materials, MCM-41 or SBA-15. The anticancer drug cisplatin and its isomer transplatin, when loaded on MCM-41 and SBA-15 microparticles, were less cytotoxic to leukemia cells than the drugs alone after 12 h exposure. However, the drug-loaded microparticles exhibited unprecedented enhanced cytotoxicity to the cancerous cells after 24 h of exposure. This cytotoxicity of the drug-loaded microparticles was even higher than of the pure drugs in solutions, suggesting …


Working Report On The Status Quo Of Nanomaterials Impact On Health And Environment, Harald Krug, Margarita Apostolova, Marite Arija Bake, Gordon Chambers, Horia Chiriac, Eva Herzog, Victoria Hand, Jürgen Höck, Peter Hoet, Nicoleta Lupu, Declan Mccormack, Maja Remskar, George Robillard, Jamila Smisterova, Jan Stetkiewicz, Speranta Tanasescu, Aris Tsatsakis, David Vaughn, Peter Wick, Jörg Wörle-Knirsch Jun 2008

Working Report On The Status Quo Of Nanomaterials Impact On Health And Environment, Harald Krug, Margarita Apostolova, Marite Arija Bake, Gordon Chambers, Horia Chiriac, Eva Herzog, Victoria Hand, Jürgen Höck, Peter Hoet, Nicoleta Lupu, Declan Mccormack, Maja Remskar, George Robillard, Jamila Smisterova, Jan Stetkiewicz, Speranta Tanasescu, Aris Tsatsakis, David Vaughn, Peter Wick, Jörg Wörle-Knirsch

Articles

Nanotechnology is regarded as one of the key technologies of the future and associated with high expectations by politics, science and economy. Artificially produced nanosized particles and nanoscale system components have new properties which are of importance for the development of new products and applications. Such new properties of materials and substances result from the special properties of surfaces and interfaces and in part, from the geometric shape of the material. In theory nanoparticles (NPs) can be produced from nearly any chemical; however, most NPs that are currently in use today have been made from transition metals, silicon, carbon (single-walled …