Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Xiao Cheng Zeng Publications

Bilayer hexagonal silicon

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Graphene-Like Bilayer Hexagonal Silicon Polymorph, Jaeil Bai, Hideki Tanaka, Xiao Cheng Zeng Jan 2010

Graphene-Like Bilayer Hexagonal Silicon Polymorph, Jaeil Bai, Hideki Tanaka, Xiao Cheng Zeng

Xiao Cheng Zeng Publications

We present molecular dynamics simulation evidence for a freezing transition from liquid silicon to quasi-twodimensional (quasi-2D) bilayer silicon in a slit nanopore. This new quasi-2D polymorph of silicon exhibits a bilayer hexagonal structure in which the covalent coordination number of every silicon atom is four. Quantum molecular dynamics simulations show that the stand-alone bilayer silicon (without the confinement) is still stable at 400 K. Electronic band-structure calculations suggest that the bilayer hexagonal silicon is a quasi-2D semimetal, similar to a graphene monolayer, but with an indirect zero band gap.