Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

University of Tennessee, Knoxville

Membrane

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Optimization And Development Of Sodium-Based Electrolytes For Energy Storage Devices, Jameson L. Tyler May 2022

Optimization And Development Of Sodium-Based Electrolytes For Energy Storage Devices, Jameson L. Tyler

Doctoral Dissertations

Energy storage devices have undergone development for decades. Much of the research is focused on the improvement of energy density by developing existing electrodes and investigating novel electrode materials. This has led to the overall improvement of traditional lithium-ion batteries, but also the discovery of new energy storage devices such sodium-ion batteries, redox flow batteries, solid electrolyte-based batteries, and many more. As the field expands, fundamental research is necessary to fully ascertain the validity of these novel systems for long term success. One of the most important components to all electrochemical energy storage devices such as batteries and supercapacitors is …


Development Of High Performance Gas Separation Membranes Through Intelligent Catalyst And Monomer Design, Kevin Richard Gmernicki May 2017

Development Of High Performance Gas Separation Membranes Through Intelligent Catalyst And Monomer Design, Kevin Richard Gmernicki

Doctoral Dissertations

Polymer membranes are a valuable tool for separating components of liquid and gas mixtures. Heavily inspired by biological systems, the idea of using the intrinsic properties of polymers to perform otherwise energy-intensive tasks is attractive for applications such as water desalination, natural gas sweetening, and post-combustion carbon capture. Of particular interest to our research group, post-combustion carbon capture is a promising potential solution aimed at reducing the carbon footprint involved with production, transportation, and storage of electrical energy generation.

Every year, the United States produces close to seven billion metric tons of carbon dioxide, of which a significant portion is …


Siloxane And Silane-Functionalized Polynorbornenes As Membranes For Passive Carbon Dioxide Separation, Eunice Koheun Hong Dec 2015

Siloxane And Silane-Functionalized Polynorbornenes As Membranes For Passive Carbon Dioxide Separation, Eunice Koheun Hong

Masters Theses

In 2012, carbon dioxide (CO2) [carbon dioxide] accounted for approximately 82% [percent] of all U.S greenhouse gas emissions.1 These excessive CO2 levels have been attributed to climate changes that have a range of negative effects on human health and welfare.1 In an effort to decrease these emissions, polymeric membranes consisting of silane- and siloxane-functionalized norbornene units have been targeted as a potential solution for the passive separation of CO2 from other non-greenhouse gases. These substituted norbornene-based polymers were synthesized via vinyl-addition polymerization. Through a series of catalyst trials, commercially available palladium and nickel catalysts were compared along …


Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark May 2014

Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark

Doctoral Dissertations

A molecular-level understanding of the factors that contribute to transport properties of proton exchange membranes (PEMs) for fuel cell applications is needed to aid in the development of superior membrane materials. Ab initio electronic structure calculations were undertaken on various PEM ionomer fragments to explore the effects of local hydration, side chain connectivity, protogenic group separation, and specific side chain chemistry on proton dissociation and transfer at low hydration. Cooperative interactions between both intra- and inter-molecular acidic groups and hydrogen bond connectivity were found to enhance proton dissociation at very low degrees of hydration. The energetics associated with proton transfer …