Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

University of South Carolina

Nanomaterials

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Understanding Rapid Intercalation Materials One Parameter At A Time, Wessel Van Den Bergh, Morgan Stefik Jun 2022

Understanding Rapid Intercalation Materials One Parameter At A Time, Wessel Van Den Bergh, Morgan Stefik

Faculty Publications

Demand for fast, energy-dense storage drives the research into nanoscale intercalation materials. Nanomaterials accelerate kinetics and can modify reaction path thermodynamics, intercalant solubility, and reversibility. The discovery of intercalation pseudocapacitance has opened questions about their fundamental operating principles. For example, are their capacitor-like current responses caused by storing energy in special near-surface regions or rather is this response due to normal intercalation limited by a slower faradaic surface-reaction? This review highlights emerging methods combining tailored nanomaterials with the process of elimination to disambiguate cause-and-effect at the nanoscale. This method is applied to multiple intercalation pseudocapacitive materials showing that the timescales …


Tailored Nanomaterials For Advancing Fast-Charge Research, Wessel Van Den Bergh Apr 2022

Tailored Nanomaterials For Advancing Fast-Charge Research, Wessel Van Den Bergh

Theses and Dissertations

The demand for fast, energy-dense storage has driven research into nanoscale intercalation materials. Nanoscale materials not only accelerate kinetics but also can modify reaction path thermodynamics, intercalant solubility, and diffusivity. Pioneering works have revealed such nanoscale changes, often without the need to separately probe each fundamental transport process. While electrodes can be designed to have one transport processes dominant, there remain opportunities to better understand energy-dense designs with multiple concomitant transport constraints. The contents herein highlight emerging an method using tailored, energy-dense nanomaterials and the process of elimination to clearly correlate architectural features to performance. For example, this method revealed …


Investigations On The Surface Chemistry Of Colloidal Quantum Dots Towards Fluorescent Biological Probes, John Hardin Dunlap Oct 2021

Investigations On The Surface Chemistry Of Colloidal Quantum Dots Towards Fluorescent Biological Probes, John Hardin Dunlap

Theses and Dissertations

Colloidal semiconductor quantum dots (QDs) have garnered significant interest as promising materials for biological applications due to their improved photostability and narrow, tunable photoluminescence properties compared to organic fluorophores. To facilitate their utility as fluorescent bioimaging probes, QDs must undergo post-synthetic modifications to exchange their native hydrophobic ligands from synthesis with hydrophilic ones that enable colloidal dispersions in aqueous environments. Many examples exist that demonstrate surface modifications for water-soluble QDs and their efficacy in biological systems, however, there is a need to develop a more thorough understanding of how hydrophilic ligands coordinate to QD surfaces in order to develop more …


Plasmonic Metallic And Semiconductor Nanomaterials, Mengqi Sun Jul 2021

Plasmonic Metallic And Semiconductor Nanomaterials, Mengqi Sun

Theses and Dissertations

The earliest account of localized surface plasmon resonance (LSPR) has to date back to the ancient age of Rome in 400 A.D. The famous glass of Lycurgus cup told the story of unique light-and-matter interaction at the nanoscale that confines the electromagnetic field resonance at its surface and therefore allows LSPR feature to noticeably arise. The conventional metallic LSPR nanomaterials, like Au and Ag nanoparticles attract constant attentions due to their synthetic simplicity, chemical robustness, and visible spectral response. Its ability to generate sensitive dielectric sensing of the surroundings, strong electromagnetic field and active charge carriers upon optical excitation triggered …