Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Molecular Dynamics Study Of The Opening Mechanism For Dna Polymerase I, Carol A. Parish, Bill R. Miller Iii, Eugene Y. Wu Dec 2014

Molecular Dynamics Study Of The Opening Mechanism For Dna Polymerase I, Carol A. Parish, Bill R. Miller Iii, Eugene Y. Wu

Chemistry Faculty Publications

During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although Xray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme:DNA) state to better understand its …


Silyl Trifluoromethanesulfonate-Activated Para-Methoxybenzyl Methyl Ether As An Alkylating Agent For Thiols And Aryl Ketones, C. Wade Downey, Sarah E. Covington, Derek C. Obenschain, Evan Halliday, James T. Rague, Danielle N. Confair Sep 2014

Silyl Trifluoromethanesulfonate-Activated Para-Methoxybenzyl Methyl Ether As An Alkylating Agent For Thiols And Aryl Ketones, C. Wade Downey, Sarah E. Covington, Derek C. Obenschain, Evan Halliday, James T. Rague, Danielle N. Confair

Chemistry Faculty Publications

para-Methoxybenzyl methyl ether acts as an alkylating agent for thiols in the presence of trimethylsilyl trifluoromethanesulfonate and trialkylamine base in good yields (58-96%). Aryl ketones are alkylated under similar conditions, probably through an enol silane intermediate, also in high yields (67-95%). The active alkylating species is likely a p-methoxybenzyl cation.


Silyl Triflate-Accelerated Additions Of Catalytically Generated Zinc Acetylides To N-Phenyl Nitrones, C. Wade Downey, Erin N. Maxwell, Danielle N. Confair Aug 2014

Silyl Triflate-Accelerated Additions Of Catalytically Generated Zinc Acetylides To N-Phenyl Nitrones, C. Wade Downey, Erin N. Maxwell, Danielle N. Confair

Chemistry Faculty Publications

Terminal alkynes readily form zinc acetylides in the presence of iPr2NEt and 20 mol% ZnBr2, then attack N-phenyl nitrones activated by trimethylsilyl trifluoromethanesulfonate. Deprotection with aqueous acid yields the N-hydroxyl propargylamine. Yields are generally high for nitrones derived from aromatic aldehydes. Control experiments suggest that the silyl triflate has a significant accelerating effect upon the reaction.


Multi-Technique Quantitative Analysis And Socioeconomic Considerations Of Lead, Cadmium, And Arsenic In Children's Toys And Toy Jewelry, Margot M. Hillyer, Lauren E. Finch, Alisha S. Cerel, Jonathan D. Dattelbaum, Michael C. Leopold Feb 2014

Multi-Technique Quantitative Analysis And Socioeconomic Considerations Of Lead, Cadmium, And Arsenic In Children's Toys And Toy Jewelry, Margot M. Hillyer, Lauren E. Finch, Alisha S. Cerel, Jonathan D. Dattelbaum, Michael C. Leopold

Chemistry Faculty Publications

A wide spectrum and large number of children’s toys and toy jewelry items were purchased from both bargain and retail vendors and analyzed for arsenic, cadmium, and lead metal content using multiple analytical techniques, including flame and furnace atomic absorption spectroscopy as well as X-ray fluorescence spectroscopy. Particularly dangerous for young children, metal concentrations in toys/toy jewelry were assessed for compliance with current Consumer Safety Product Commission (CPSC) regulations (F963-11). A conservative metric involving multiple analytical techniques was used to categorize compliance: one technique confirmation of metal in excess of CPSC limits indicated a “suspect” item while confirmation on two …


A Loose Domain Swapping Organization Confers A Remarkable Stability To The Dimeric Structure Of The Arginine Binding Protein From Thermotoga Maritima, Alessia Ruggiero, Jonathan D. Dattelbaum, Maria Staiano, Rita Berisio, Sabato D'Auria, Luigi Vitagliano Jan 2014

A Loose Domain Swapping Organization Confers A Remarkable Stability To The Dimeric Structure Of The Arginine Binding Protein From Thermotoga Maritima, Alessia Ruggiero, Jonathan D. Dattelbaum, Maria Staiano, Rita Berisio, Sabato D'Auria, Luigi Vitagliano

Chemistry Faculty Publications

The arginine binding protein from Thermatoga maritima (TmArgBP), a substrate binding protein (SBP) involved in the ABC system of solute transport, presents a number of remarkable properties. These include an extraordinary stability to temperature and chemical denaturants and the tendency to form multimeric structures, an uncommon feature among SBPs involved in solute transport. Here we report a biophysical and structural characterization of the TmArgBP dimer. Our data indicate that the dimer of the protein is endowed with a remarkable stability since its full dissociation requires high temperature as well as SDS and urea at high concentrations. In order to elucidate …


Stop Rotating! One Substitution Halts The B19- Motor, Francisco Cervantes-Navarro, Gerarso Martínez-Guajardo, Edison Osorio, Diego Moreno, William Tiznado, Rafael Islas, Kelling J. Donald, Gabriel Merino Jan 2014

Stop Rotating! One Substitution Halts The B19- Motor, Francisco Cervantes-Navarro, Gerarso Martínez-Guajardo, Edison Osorio, Diego Moreno, William Tiznado, Rafael Islas, Kelling J. Donald, Gabriel Merino

Chemistry Faculty Publications

The B19- anion and other boron species have been dubbed ‘Wankel motors’ for the almost barrierless rotation of inner and outer concentric rings relative to each other in these compounds. A single substitution in B19- is shown to shut down the well-established fluxionality in the anion. A carbon atom substituted in the structure to give a neutral CB18 species is shown computationally to enforce bond localization.


The Effects Of Coal Mining On Health In Appalachia : Global Context And Social Justice Implications, Adrienne Schmidt Jan 2014

The Effects Of Coal Mining On Health In Appalachia : Global Context And Social Justice Implications, Adrienne Schmidt

Honors Theses

The purpose of this report is to investigate the environmental and health effects of coal mining in the Appalachian region of the United States in the context of global natural resource extraction, explore existing regulation for the reduction of negative environmental health effects of mining in Appalachia, and explore the social justice implications of current mining practices. The research for this report was limited to literature published in English. It was found that there are widespread negative health effects of mining in Appalachia due to environmental toxins, a toxic social environment of limited economic opportunity, and occupational health hazards. The …