Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

San Jose State University

Faculty Publications

Keyword
Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Spin-Imbalance In A 2d Fermi-Hubbard System, Peter Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David Huse, Waseem Bakr Sep 2017

Spin-Imbalance In A 2d Fermi-Hubbard System, Peter Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David Huse, Waseem Bakr

Faculty Publications

The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping the low-temperature …


Radicals, Metals And Magnetism, David J R Brook Jan 1998

Radicals, Metals And Magnetism, David J R Brook

Faculty Publications

The interaction between unpaired electrons governs many physical properties of materials. Although in a fundamental sense the interaction is simple, a full understanding of the interaction in molecular systems is complicated by the presence of other bonding and non-bonding electrons. The resulting many body problem is very challenging. Nevertheless, much qualitative understanding can be obtained from applying simple molecular orbital theory and considering only the partly filled orbitals. The resulting model can be used to describe existing diradical and metal-radical systems and also has predicative value in the search for molecular magnets and design of nanoscale devices.