Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Effects Of The Dihydrouracil Lesion On Dna Using 1h/31p 1d And 2d Solution Nmr, Benjamin M. Boyd Dec 2019

Effects Of The Dihydrouracil Lesion On Dna Using 1h/31p 1d And 2d Solution Nmr, Benjamin M. Boyd

MSU Graduate Theses

The effects of the dihydrouracil lesion in DNA were studied using two dimensional NMR spectroscopy. The sequence used was based off of the Drew-Dickerson Dodecamer, with the cytosine in the three position replaced by a dihydrouracil. All of the nonexchangeable proton chemical shifts, with the exception of the H2, H5’, and H5’’, of the lesioned DNA were identified using NOESY spectra and then compared to the chemical shift values of the Drew Dickerson Dodecamer. The largest differences in chemical shifts were observed in the nucleotides neighboring the lesion, both within the strand and on the opposite strand. The imino exchangeable …


Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka Dec 2019

Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka

MSU Graduate Theses

We present a computational study of amorphous boron carbide (a-BxC) models using Molecular Dynamics (MD) studied with Stillinger-Weber (SW) and ReaxFF potential. The atomic structure factor (S(Q)), radial distribution function (RDF) and bond lengths comparison with other experimental and ab initio models shows that a random arrangement of icosahedra (B12, B11C) interconnected by chains (CCC, CBC) are present in a-BxC. Afterward, Hybrid Reverse Monte Carlo (HRMC) technique is used to recreate a-BxC structures. The existing SW potential parameters of Boron are optimized for the α-rhombohedral (Icosahedral B12 …


Quality Of Wheat Grains (Triticum Aestivum) Generationally Exposed To Cerium Oxide Nanoparticles (Nceo2), Oluwasegun Michael Abolade Aug 2019

Quality Of Wheat Grains (Triticum Aestivum) Generationally Exposed To Cerium Oxide Nanoparticles (Nceo2), Oluwasegun Michael Abolade

MSU Graduate Theses

The impacts of generational exposure to engineered nanomaterial on grain quality are poorly documented. This study was performed on wheat grains harvested from plants grown in soil amended with cerium oxide nanoparticles (nCeO2) at the 2nd and 3rd generations. Third generation experiment was performed at low and high nitrogen (N) soil levels. The goal was to investigate changes in grain fatty acid and elemental contents due to parental exposure (C1 vs T1 in 2nd generation, C1C2 vs T1T2 in 3rd generation) or current generation …


Synthesis And Characterization Of Gd-Doped Inp/Zns Quantum Dots For Use In Multimodal Imaging Probes, Molly Erin Duszynski Aug 2019

Synthesis And Characterization Of Gd-Doped Inp/Zns Quantum Dots For Use In Multimodal Imaging Probes, Molly Erin Duszynski

MSU Graduate Theses

Quantum dots (QDs), which are intensely fluorescent nanocrystals ranging 2-10 nanometers in diameter, have shown promise in fluorescence imaging. However, in vivo applications of QDs are limited due to the opaque surrounding of tissue and bones. In this study, InP/ZnS QDs were doped with a paramagnetic atom in an attempt to render them MRI-active. We have further bioconjugated these nanoprobes to develop highly specific MRI-active probes that can be used for detection of neurodegenerative diseases. These bioconjugated nanoprobes detect a mutated form of alpha-synuclein that forms oligomers that are a hallmark of Parkinson’s disease andother alpha-synucleinopathies. Here, we have optimized …


Concentration-Dependent Magnetic Properties Of Mnxnio1-X Novel Inverted Core-Shell Nanoparticles, Md Nazmul Alam May 2019

Concentration-Dependent Magnetic Properties Of Mnxnio1-X Novel Inverted Core-Shell Nanoparticles, Md Nazmul Alam

MSU Graduate Theses

The doping concentration (Mn concentration) dependent magnetic properties of NiO@NixMn1-xO novel inverted core-shell magnetic nanoparticles are of great interest of this present research. Primarily, we investigated the oxidation state of Ni from size-dependent four NiO NPs samples, and then studied the variation in the magnetic properties of Mn concentration-dependent NiO@NixMn1-xO CNPs. The NiO nanoparticles were synthesized using a thermal decomposition method. The XRD data indicates that the crystal structure (rock salt) remains fixed in all NiO samples and XPS data shows the oxidation state of size-dependent NiO nanoparticles is 2+. The hydrothermal epitaxy method was used to incorporate Mn in …


An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal May 2019

An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal

MSU Graduate Theses

Rigorous study of the speciation distribution of uranyl-chloride bearing solutions under hydrothermal conditions is important to understand the transport mechanism of uranium underground, which is of uttermost interest to parties studying the geological uranium deposits and those studying the possibilities of geological repositories for spent nuclear waste. I report an in-situ Raman spectroscopic study of the speciation distribution of aqueous uranyl-chloride complexes upto 500°C conducted using a HDAC as the high PT spectroscopic cell. The samples studied contained the species UO22+, UO2Cl+, UO2Cl20 and UO2Cl3- …


Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese May 2019

Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese

MSU Graduate Theses

Nanoparticles have become very useful as delivery systems in biomedicine. The nanoparticles can be layered with different compounds to produce a vessel for transport of biological materials. Specifically, gold nanoparticles layered with a reducing agent, lysozyme, and polyelectrolytes can be synthesized to transport lysozyme into a cell. However, zinc oxide nanoparticles are cheaper, biocompatible nanoparticles that can be used for the same process. Here in, zinc oxide nanoparticle conjugates were synthesized, modified, and analyzed to be used as a biological material delivery system. The zinc oxide nanoparticles were synthesized using zinc chloride and sodium hydroxide. The particles were then layered …