Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physical Sciences and Mathematics

Self-Quenching Of Carbon Monoxide In The Presence Of Noble Gases, Madeline V. Hinkle Jan 2024

Self-Quenching Of Carbon Monoxide In The Presence Of Noble Gases, Madeline V. Hinkle

Honors Theses

Precise rate coefficients for the vibrational relaxation pathways of CO(v)-CO in the presence of Ar and Kr have been determined through the work of this thesis. This work was motivated by the need to find a more cost-effective alternative to using xenon as a bath gas, which has increased significantly in price in the past few years. Similar experiments within this lab at Bucknell have been conducted in the past using argon, which can be used in the same manner as xenon but comes at a much lower price, but the experiments yielded inferior results compared to those using xenon. …


Deposited Cigarette Smoke As A Driver Of Oxidation And Partitioning Processes On Indoor Surfaces, April Hurlock Jan 2023

Deposited Cigarette Smoke As A Driver Of Oxidation And Partitioning Processes On Indoor Surfaces, April Hurlock

Honors Theses

Despite the large amount of time that individuals spend indoors during their lives, very little attention was paid to the chemistry that occurs on indoor surfaces until recently. Although not visible to the naked eye, physical and chemical processes, such as partitioning and oxidation, are occurring on virtually every indoor surface in a typical household. Indoor pollutants, ranging from skin oils to environmental cigarette smoke, drive a lot of these processes. The transformation of indoor surfaces by indoor pollutants can increase chemical exposure risks as new irritants or carcinogens can be introduced to the surfaces. In this thesis, I describe …


Selective Melt Recrystallization Of Acetaminophen Polymorphs Through Environmental Control, Eleanor Lowe Jan 2023

Selective Melt Recrystallization Of Acetaminophen Polymorphs Through Environmental Control, Eleanor Lowe

Honors Theses

Polymorphism is the ability for a molecule to crystallize into multiple different structures in the solid state. The preparation of one polymorph over another is practically important to pharmaceutical development, as properties of polymorphs can vary and impact the drug delivery method. Polymorph outcomes depend heavily on the environment in which the crystal is nucleated, or initially formed. Acetaminophen, the active ingredient in Tylenol, is one example of a polymorphic compound. Here we use acetaminophen as a model system to better understand primary factors controlling polymorph selection and interconversion. We hypothesize a specific atmospheric environmental factor plays large role in …


Indoor Air Quality Through The Lens Of Outdoor Atmospheric Chemistry, Jonathan P.D. Abbatt, Douglas B. Collins Jan 2022

Indoor Air Quality Through The Lens Of Outdoor Atmospheric Chemistry, Jonathan P.D. Abbatt, Douglas B. Collins

Faculty Contributions to Books

Outdoor atmospheric chemistry and air quality have been the topic of research that intensified in earnest around the mid-20th century, while indoor air quality research has only been a key focus of chemical researchers over the last 30 years. Examining practices and approaches employed in the outdoor atmospheric chemistry research enterprise provides an additional viewpoint from which we can chart new paths to increase scientific understanding of indoor chemistry. This chapter explores our understanding of primary chemical sources, homogeneous and multiphase reactivity, gas-surface partitioning, and the coupling between the chemistry and dynamics of indoor air through the lens of …


Unintended Consequences Of Air Cleaning Chemistry, Douglas B. Collins, Delphine K. Farmer Aug 2021

Unintended Consequences Of Air Cleaning Chemistry, Douglas B. Collins, Delphine K. Farmer

Faculty Journal Articles

Amplified interest in maintaining clean indoor air associated with the airborne transmission risks of SARS-CoV-2 have led to an expansion in the market for commercially available air cleaning systems. While the optimal way to mitigate indoor air pollutants or contaminants is to control (remove) the source, air cleaners are a tool for use when absolute source control is not possible. Interventions for indoor air quality management include physical removal of pollutants through ventilation or collection on filters and sorbent materials, along with chemically reactive processes that transform pollutants or seek to deactivate biological entities. This perspective intends to highlight the …


Establishing Independent Tunability Of The Mechanical And Transport Properties Of Polymer Gels, Lucas Rankin Jan 2021

Establishing Independent Tunability Of The Mechanical And Transport Properties Of Polymer Gels, Lucas Rankin

Master’s Theses

Polymer gels can be used in the fabrication of materials for filtering liquid and gaseous media, solid-state electrolytes, and transdermal medical patches. This diverse range of applications primarily relies on the transport and mechanical properties of polymer gels. Both sets of properties have shown excellent tunability, but typically in a coupled fashion. Establishing the independent tunability of the transport and mechanical properties of polymer gels (using simple, cost-effective methods) is paramount if polymer gels are to be used to their full potential. Specifically, block copolymer gels self-assemble into organized nanoscale networks within the gel solvent, which allows for facile control …


Surface Reservoirs Dominate Dynamic Gas-Surface Partitioning Of Many Indoor Air Constituents, Chen Wang, Douglas B. Collins, Caleb Arata, Allen H. Goldstein, James M. Mattila, Delphine K. Farmer, Laura Ampollini, Peter F. Decarlo, Atila Novoselac, Marina E. Vance, William W. Nazaroff, Jonathan P.D. Abbatt Feb 2020

Surface Reservoirs Dominate Dynamic Gas-Surface Partitioning Of Many Indoor Air Constituents, Chen Wang, Douglas B. Collins, Caleb Arata, Allen H. Goldstein, James M. Mattila, Delphine K. Farmer, Laura Ampollini, Peter F. Decarlo, Atila Novoselac, Marina E. Vance, William W. Nazaroff, Jonathan P.D. Abbatt

Faculty Journal Articles

Human health is affected by indoor air quality. One distinctive aspect of the indoor environment is its very large surface area that acts as a poorly characterized sink and source of gas-phase chemicals. In this work, air-surface interactions of 19 common indoor air contaminants with diverse properties and sources were monitored in a house using fast-response, on-line mass spectrometric and spectroscopic methods. Enhanced-ventilation experiments demonstrate that most of the contaminants reside in the surface reservoirs and not, as expected, in the gas phase. They participate in rapid air-surface partitioning that is much faster than air exchange. Phase distribution calculations are …


Stability Of Bimetallic Clusters In Protein Model Systems, Sean Hartnett Jan 2018

Stability Of Bimetallic Clusters In Protein Model Systems, Sean Hartnett

Master’s Theses

Heterobimetallic cofactors are commonly found in proteins and allow them to perform unique chemical processes that would otherwise not be possible. The interactions between these metals allow the protein to accomplish difficult chemical transformations. Previously, the thermodynamic stability of a FeII /MnII cluster in the dinucleating ligand F-HXTA (5-fluoro-2-hydroxy-1,3-xylene-α,α′-diamine-N,N,N′,N′-tetraacetic acid) has been investigated in our lab as a model of cluster assembly in the proteins ribonucleotide reductase (RNR) and R2-like ligand binding oxidases (R2lox). By measuring equilibrium concentrations of F-HXTA complexes via 19F-NMR, it was found that the equilibrium for metal exchange between the homobimetallic …


Manifestations Of Classical Physics In The Quantum Evolution Of Correlated Spin States In Pulsed Nmr Experiments, Martin K. Ligare Jan 2017

Manifestations Of Classical Physics In The Quantum Evolution Of Correlated Spin States In Pulsed Nmr Experiments, Martin K. Ligare

Faculty Journal Articles

Multiple-pulse NMR experiments are a powerful tool for the investigation of mole- cules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi- classical vector representations. In this paper I present a new way in which to inter- pret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identi- cally to those of classical …


Concerted Hydrogen-Bond Breaking By Quantum Tunneling In The Water Hexamer Prism, Jeremy O. Richardson, Cristobal Perez, Simon Lobsiger, Adam A. Reid, Berhane Temelso, George C. Shields, Zbigniew Kisiel, David J. Wales, Brooks H. Pate, Stuart C. Althorpe Jan 2016

Concerted Hydrogen-Bond Breaking By Quantum Tunneling In The Water Hexamer Prism, Jeremy O. Richardson, Cristobal Perez, Simon Lobsiger, Adam A. Reid, Berhane Temelso, George C. Shields, Zbigniew Kisiel, David J. Wales, Brooks H. Pate, Stuart C. Althorpe

Faculty Journal Articles

The nature of the intermolecular forces between water molecules is the same in small hydrogen-bonded clusters as in the bulk. The rotational spectra of the clusters therefore give insight into the intermolecular forces present in liquid water and ice. The water hexamer is the smallest water cluster to support low-energy structures with branched three-dimensional

hydrogen-bond networks, rather than cyclic two-dimensional topologies. Here we report measurements of splitting patterns in rotational transitions of the water hexamer prism, and we used quantum simulations to show that they result from geared and antigeared rotations of a pair of water molecules. Unlike previously reported …


Structural Studies Of Bile Salt Aggregation By Nuclear Magnetic Resonance Spectroscopy And Mass Spectrometry, Nicholas Doyle Jul 2014

Structural Studies Of Bile Salt Aggregation By Nuclear Magnetic Resonance Spectroscopy And Mass Spectrometry, Nicholas Doyle

Master’s Theses

Bile salts are biomolecules that are produced in the liver and are responsible for a range of functions in the process of digestion, primarily the emulsification of dietary fat and fat-soluble vitamins. Despite their importance in biological chemistry, the structure and dynamics of bile salt aggregation are not well understood. The efforts described herein attempt to enhance the understanding of cholate aggregation numbers (AN), critical micelle concentration (CMC), micellar structure(s), and interactions with a binaphthyl probe molecule. Cholate is the most common bile salt in mammals and is, therefore, a decent model for describing bile salt aggregation. CMC determination is …


Hydration Of The Sulfuric Acid−Methylamine Complex And Implications For Aerosol Formation, Danielle J. Bustos, Berhane Temelso, George C. Shields Apr 2014

Hydration Of The Sulfuric Acid−Methylamine Complex And Implications For Aerosol Formation, Danielle J. Bustos, Berhane Temelso, George C. Shields

Faculty Journal Articles

The binary H2SO4−H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H …


Broadband Fourier Transform Rotational Spectroscopy For Structure Determination: The Water Heptamer, Cristóbal Pérez, Simon Lobsiger, Nathan A. Seifert, Daniel P. Zaleski, Berhane Temelso, George C. Shields, Zbigniew Kisiel, Brooks H. Pate Jan 2013

Broadband Fourier Transform Rotational Spectroscopy For Structure Determination: The Water Heptamer, Cristóbal Pérez, Simon Lobsiger, Nathan A. Seifert, Daniel P. Zaleski, Berhane Temelso, George C. Shields, Zbigniew Kisiel, Brooks H. Pate

Faculty Journal Articles

Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have chan- ged the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (13C, 15N, 18O) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2–8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water …


Structure And Thermodynamics Of H3o+(H2o)8 Clusters: A Combined Molecular Dynamics And Quantum Mechanics Approach, Berhane Temelso, Thorsten Koddermann, Karl K. Kirschner, Katurah L. Klein, George C. Shields Jan 2013

Structure And Thermodynamics Of H3o+(H2o)8 Clusters: A Combined Molecular Dynamics And Quantum Mechanics Approach, Berhane Temelso, Thorsten Koddermann, Karl K. Kirschner, Katurah L. Klein, George C. Shields

Faculty Journal Articles

We have studied the structure and stability of (H3O+)(H2O)8 clusters using a combination of molecular dynamics sampling and high-level ab initio calculations. 20 distinct oxygen frameworks are found within 2 kcal/mol of the electronic or standard Gibbs free energy minimum. The impact of quantum zero-point vibrational corrections on the relative stability of these isomers is quite significant. The box-like isomers are favored in terms of electronic energy, but with the inclusion of zero-point vibrational corrections and entropic effects tree-like isomers are favored at higher temperatures. Under conditions from 0 to 298.15 K, the …


5a-Butyl-1,3,8,10-Tetra-Chloro-7,13-Bis-(4-Nitro-Benzo-Yl)-5a,6a,12a,12b-Tetra-Hydro-7h,13h-Thieno[2,3-B:4,5-B']Bis-(1,4-Benzoxazine), Kai Tang, Margaret E. Kastner Jan 2012

5a-Butyl-1,3,8,10-Tetra-Chloro-7,13-Bis-(4-Nitro-Benzo-Yl)-5a,6a,12a,12b-Tetra-Hydro-7h,13h-Thieno[2,3-B:4,5-B']Bis-(1,4-Benzoxazine), Kai Tang, Margaret E. Kastner

Faculty Journal Articles

The title compound, C(34)H(24)Cl(4)N(4)O(8)S, is a linear penta-cyclic system formed of two substituted benzoxazinyl groups fused to 2-n-butyl-tetra-hydro-thio-phene. The oxazine ring, which is fused to the n-butyl-substituted side of the thio-phene ring, is in a boat conformation. The other fused oxazine ring and the tetra-hydro-thiene ring are each in an envelope conformation. The bridgehead C atom alpha to both the S and N atoms forms the flap of each envelope. This results in a twist of the penta-cyclic system such that the dihedral angle between the terminal dichloro-benzene rings is 82.92 (8)°. In the crystal, inversion-related mol-ecules form a weakly …


Computational Study Of The Hydration Of Sulfuric Acid Dimers: Implications For Acid Dissociation And Aerosol Formation, Berhane Temelso, Thuong Ngoc Phan, George C. Shields Jan 2012

Computational Study Of The Hydration Of Sulfuric Acid Dimers: Implications For Acid Dissociation And Aerosol Formation, Berhane Temelso, Thuong Ngoc Phan, George C. Shields

Faculty Journal Articles

We have investigated the thermodynamics of sulfuric acid dimer hydration using ab initio quantum mechanical methods. For (H2SO4)2(H2O)n where n = 0−6, we employed high-level ab initio calculations to locate the most stable minima for each cluster size. The results presented herein yield a detailed understanding of the first deprotonation of sulfuric acid as a function of temperature for a system consisting of two sulfuric acid molecules and up to six waters. At 0 K, a cluster of two sulfuric acid molecules and one water remains undissociated. Addition of a second …