Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

PDF

Physics Faculty Research & Creative Works

Space Groups

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Structural Evolution Of Ammonia Borane For Hydrogen Storage, Jinbo Yang, Jagat Lamsal, Qingsheng Cai, William B. Yelon, William Joseph James Mar 2008

Structural Evolution Of Ammonia Borane For Hydrogen Storage, Jinbo Yang, Jagat Lamsal, Qingsheng Cai, William B. Yelon, William Joseph James

Physics Faculty Research & Creative Works

We have studied the crystal structure of fully deuterated BH3NH3 using powder neutron diffraction at different temperatures. It is evident that an order-disorder phase transition occurs around 225 K. At low temperature, the compound crystallizes in the orthorhombic structure with space group Pnm21 and gradually transforms to a high temperature tetragonal structure with space group I4 mm above 225 K. At 16 K, the BD3-ND3 unit stacks along the c axis with a tilt angle of about 16° between the N-B bond and the c axis. As the temperature is increased, the BD3-ND3 groups start to reorient along the c …


Crystal And Electronic Structures Of The Complex Hydride Li₄Bn₃H₁₀, Jinbo Yang, X. J. Wang, Qingsheng Cai, William B. Yelon, William Joseph James Aug 2007

Crystal And Electronic Structures Of The Complex Hydride Li₄Bn₃H₁₀, Jinbo Yang, X. J. Wang, Qingsheng Cai, William B. Yelon, William Joseph James

Physics Faculty Research & Creative Works

The crystal structure of Li4BN3H10 was investigated using powder neutron diffraction with high sensitivity. The compound crystallizes in the cubic space group 213 with lattice parameters a=10.645 19(52) Å with an ordered arrangement of [NH2]−1 and [BH4]−1 anions in a molar ratio of 3:1. The bond lengths between the nearest nitrogen and hydrogen atoms are 1.04(4) and 1.14(4) Å. The bond angle between H(1)-N-H(2) is about 126(6)°, while those between H(3)-B-H(3) and H(3)-B-H(4) are about 109(6)°-110(7)°. There are three different Li sites surrounded by [NH2]−1 and [BH4]−1 anions in distorted tetrahedral configurations. The Li(3)-B and Li(3)-N bond distances are about …


The Effect Of Cu-Doping On The Magnetic And Transport Properties Of La₀.₇Sr₀.₃Mno₃, M. S. Kim, Jinbo Yang, Qingsheng Cai, X.-D. Zhou, William B. Yelon, Paul Ernest Parris, William Joseph James Jan 2005

The Effect Of Cu-Doping On The Magnetic And Transport Properties Of La₀.₇Sr₀.₃Mno₃, M. S. Kim, Jinbo Yang, Qingsheng Cai, X.-D. Zhou, William B. Yelon, Paul Ernest Parris, William Joseph James

Physics Faculty Research & Creative Works

The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1xCuxO3 (0<=x<=0.20) have been studied using neutron diffraction, magnetization, and magnetoresistance (MR) measurements. All samples show the rhombohedral structure with the R[overline 3]c space-group from 10 K to room temperature (RT). Neutron diffraction data suggest that some of the Cu ions have a Cu3+ state in these compounds. The substitution of Mn by Cu affects the MnO bond length and Mn-O-Mn bond angle resulting from the minimization of the distortion of the MnO6 octahedron. Resistivity measurements show that a metal to insulator transition occurs for the x>=0.15 samples. The x=0.15 sample shows the highest MR([approximate]80%), which might result from the co-existence of Cu3-Cu2+ and the dilution effect of Cu-doping on the double exchange interaction