Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Crystal And Electronic Structures Of The Complex Hydride Li₄Bn₃H₁₀, Jinbo Yang, X. J. Wang, Qingsheng Cai, William B. Yelon, William Joseph James Aug 2007

Crystal And Electronic Structures Of The Complex Hydride Li₄Bn₃H₁₀, Jinbo Yang, X. J. Wang, Qingsheng Cai, William B. Yelon, William Joseph James

Physics Faculty Research & Creative Works

The crystal structure of Li4BN3H10 was investigated using powder neutron diffraction with high sensitivity. The compound crystallizes in the cubic space group 213 with lattice parameters a=10.645 19(52) Å with an ordered arrangement of [NH2]−1 and [BH4]−1 anions in a molar ratio of 3:1. The bond lengths between the nearest nitrogen and hydrogen atoms are 1.04(4) and 1.14(4) Å. The bond angle between H(1)-N-H(2) is about 126(6)°, while those between H(3)-B-H(3) and H(3)-B-H(4) are about 109(6)°-110(7)°. There are three different Li sites surrounded by [NH2]−1 and [BH4]−1 anions in distorted tetrahedral configurations. The Li(3)-B and Li(3)-N bond distances are about …


Mesoporous Matrices For Quantum Computation With Improved Response Through Redundance, T. E. Hodgson, Massimo F. Bertino, Nicholas Leventis, Irena D'Amico Jan 2007

Mesoporous Matrices For Quantum Computation With Improved Response Through Redundance, T. E. Hodgson, Massimo F. Bertino, Nicholas Leventis, Irena D'Amico

Physics Faculty Research & Creative Works

We present a solid state implementation of quantum computation, which improves previously proposed optically driven schemes. Our proposal is based on vertical arrays of quantum dots embedded in a mesoporous material which can be fabricated with present technology. The redundant encoding typical of the chosen hardware protects the computation against gate errors and the effects of measurement induced noise. The system parameters required for quantum computation applications are calculated for II-VI and III-V materials and found to be within the experimental range. The proposed hardware may help minimize errors due to polydispersity of dot sizes, which is at present one …