Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

PDF

Physics Faculty Research & Creative Works

1999

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Magnetic And Crystallographic Properties Of Lani₅₋ₓfex, C. Tan, Oran Allan Pringle, Mingxing Chen, William B. Yelon, J. Gebhardt, Naushad Ali, C. Y. Tai, G. K. Marasinghe, George Daniel Waddill, William Joseph James Jan 1999

Magnetic And Crystallographic Properties Of Lani₅₋ₓfex, C. Tan, Oran Allan Pringle, Mingxing Chen, William B. Yelon, J. Gebhardt, Naushad Ali, C. Y. Tai, G. K. Marasinghe, George Daniel Waddill, William Joseph James

Physics Faculty Research & Creative Works

No abstract provided.


X-Ray Absorption, Neutron Diffraction, And Mössbauer Effect Studies Of Mnzn-Ferrite Processed Through High-Energy Ball Milling, D. J. Fatemi, V. G. Harris, Mingxing Chen, Satish K. Malik, William B. Yelon, Gary J. Long, Amitabh Mohan Jan 1999

X-Ray Absorption, Neutron Diffraction, And Mössbauer Effect Studies Of Mnzn-Ferrite Processed Through High-Energy Ball Milling, D. J. Fatemi, V. G. Harris, Mingxing Chen, Satish K. Malik, William B. Yelon, Gary J. Long, Amitabh Mohan

Physics Faculty Research & Creative Works

MnZn-ferrite has been prepared via high-energy ball milling of elemental oxides MnO, ZnO, and α-Fe2O3. Neutron diffraction measurements suggest a high density of vacancies in a spinel structure. The spinel phase appears to comprise 99.8 wt % of the material in the sample milled for 40 h, with the remainder attributable to unreacted α-Fe2O3. The x-ray absorption near-edge structure was analyzed to provide an understanding of the charge state of the constituent Fe ions. This analysis reveals about 2/3 of Fe cations to be trivalent, increasing to about 3/4 after a 5 …