Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher Jan 2021

Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher

Graduate Research Posters

Macrolide antibiotics are in high demand for clinical applications. Macrolides are biosynthesized via giant assembly line polyketide synthases (PKS) which are arranged in a modular fashion. Combinatorial biosynthetic methods have been used to produce diversified macrolides by reprograming these modules and modifying tailoring enzymes required for post synthetic modifications. However it is challenging due to the size and complexity of PKSs. To overcome this challenge, new enzymes for macrolide diversification could be obtained by directed evolution where a large number of enzyme variants need to be screened. Therefore it is important to develop high throughput screening methods to identify the …


Collisions Or Adsorption: An Electrochemical Random Walk Decides, Junaid U. Ahmed, Julio C. Alvarez Jan 2021

Collisions Or Adsorption: An Electrochemical Random Walk Decides, Junaid U. Ahmed, Julio C. Alvarez

Graduate Research Posters

Current-time recordings of toluene microdroplets emulsified in water and containing 20 mM Ferrocene (Fc), show multiple electrochemical peaks from oxidation of Fc on disk microelectrodes (5μm-diameter). The average droplet diameter (~0.7 μm) determined from area integration of the peaks was close to Dynamic Light Scattering measurements (~1 μm). Random walk simulations were performed deriving equations to simulate droplet electrolysis using the diffusion and thermal velocity expressions established by Einstein. The simulations show that multiple droplet-electrode collisions, lasting ~0.11 μs each, occur before a droplet wanders away. Updating the Fc-concentration at every collision shows that a droplet only oxidizes ~0.58 % …


Activity Of Saccharomyces Cerevisiae By Single Entity Electrochemistry, John Lutkenhaus Jan 2021

Activity Of Saccharomyces Cerevisiae By Single Entity Electrochemistry, John Lutkenhaus

Graduate Research Posters

According to the Centers of Disease Control and Prevention, antibiotics decrease in effectiveness as bacteria gain resistance for previously treatable illnesses. Currently, antibiotic susceptibility is typically carried out via the Kirby-Bauer method. Even with automation, this process requires two incubation periods so a less time-consuming technique is desirable. Single entity electrochemistry (SEE) detects changes in current when collisions of individual particles at an ultramicroelectrode (UME) are linked with an electrochemical event. Our group has obtained step-like and spike-like responses of Saccharomyces cerevisiae at the UME surface as a result of adsorption and desorption, respectively. This response is due to the …