Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Capillary-Tube Package Devices For The Quantitative Performance Evaluation Of Nuclear Magnetic Resonance Spectrometers And Pulse Sequences, Lingyu Chi, Ming Huang, Annalise R. Pfaff, Jie Huang, Rex E. Gerald Ii, Klaus Woelk Dec 2018

Capillary-Tube Package Devices For The Quantitative Performance Evaluation Of Nuclear Magnetic Resonance Spectrometers And Pulse Sequences, Lingyu Chi, Ming Huang, Annalise R. Pfaff, Jie Huang, Rex E. Gerald Ii, Klaus Woelk

Electrical and Computer Engineering Faculty Research & Creative Works

With the increased sensitivity of modern nuclear magnetic resonance (NMR) spectrometers, the minimum amount needed for chemical-shift referencing of NMR spectra has decreased to a point where a few microliters can be sufficient to observe a reference signal. The reduction in the amount of required reference material is the basis for the NMR Capillary-tube Package (CapPack) platform that utilizes capillary tubes with inner diameters smaller than 150 µm as NMR-tube inserts for external reference standards. It is shown how commercially available electrophoresis capillary tubes with outer diameters of 360 µm are filled with reference liquids or solutions and then permanently …


Nmr Studies Of Loaded Microspheres, Ming Huang, Sisi Chen, Rex E. Gerald Ii, Jie Huang, Klaus Woelk May 2018

Nmr Studies Of Loaded Microspheres, Ming Huang, Sisi Chen, Rex E. Gerald Ii, Jie Huang, Klaus Woelk

Electrical and Computer Engineering Faculty Research & Creative Works

Porous-wall hollow glass microspheres (PWHGMs) are a novel form of glass materials that consist of 1-μm-thick porous silica shells, 20-100 μm in diameter, with a hollow cavity in the center. Utilizing the central cavity for material storage and the porous walls for controlled release is a unique combination that renders PWHGMs a superior vehicle for targeted drug delivery. In this study, NMR spectroscopy was used to characterize PWHGMs for the first time. A vacuum-based loading system was developed to load PWHGMs with various compounds followed by a washing procedure that uses solvents immiscible with the target material. Immiscible binary model …