Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study In Electrochemical Reduction Of P-Nitrothiophenol, Yun Ling, Jing Tang, Guo-Kun Liu, Cheng Zong Dec 2019

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study In Electrochemical Reduction Of P-Nitrothiophenol, Yun Ling, Jing Tang, Guo-Kun Liu, Cheng Zong

Journal of Electrochemistry

P-nitrothiophenol (PNTP) is one of the most common probe molecules studied by surface-enhanced Raman spectroscopy (SERS). The research in electrochemical reduction behavior of PNTP will help understanding the mechanism for the nitrobenzene reduction. In this paper, we used transient electrochemical surface-enhanced Raman spectroscopy (TEC-SERS) to study the SERS of PNTP with cyclic voltammetry and chronoamperometry on gold electrodes. The results show that the TEC-SERS provide a time resolution that equals the transient electrochemical methods, and we concluded that the reaction was so quick that we did not observe the spectral information of intermediate species described in the literatures with a …


Surface Immobilization Of Terpyridine Compounds, Elizabeth Hallett May 2019

Surface Immobilization Of Terpyridine Compounds, Elizabeth Hallett

Chemical Engineering Undergraduate Honors Theses

The deoxydehydration (DODH) of polyols to alkenes is a promising method of producing high-value chemical feedstocks from biomass-derived materials. Current catalytic systems for DODH require the use of costly reducing agents that generate stoichiometric amounts of chemical waste. Immobilizing catalysts on electrode surfaces using chemical linking groups eliminates the need for sacrificial reductants. In this work, glassy carbon electrodes were modified with 4’-(3,4-dihydroxyphenyl)-2,2’:6’,2’’-terpyridine to investigate o-benzoquinone as a potential linking group for DODH, and possibly for other reactions. Previous studies involving electrodes modified with quinone-containing compounds have primarily been focused on catalyzing the oxidation of NADH; the nature or …