Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Series

2013

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

Tubular And Sector Heat Pipes With Interconnected Branches For Gas Turbine And/Or Compressor Cooling, Brian D. Reding Ii Sep 2013

Tubular And Sector Heat Pipes With Interconnected Branches For Gas Turbine And/Or Compressor Cooling, Brian D. Reding Ii

FIU Electronic Theses and Dissertations

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system …


Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson Aug 2013

Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson

STAR Program Research Presentations

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) is a converted 747SP that houses a 2.5 m telescope that observes the sky through an opening in the side of the aircraft. Because it flies at altitudes up to 45,000 feet, SOFIA gets 99.99% transmission in the infrared. Multiple science instruments mount one at a time on the telescope to interpret infrared and visible light from target sources. Ball Infrared Black (BIRB) currently coats everything that the optics sees inside the telescope assembly (TA) cavity in order to eliminate noise from the glow of background sky, aircraft exhaust, and other sources. A …


Decoupling The Stationary Navier-Stokes-Darcy System With The Beavers-Joseph-Saffman Interface Condition, Yong Cao, Yuchuan Chu, Xiaoming He, Mingzhen Wei Jul 2013

Decoupling The Stationary Navier-Stokes-Darcy System With The Beavers-Joseph-Saffman Interface Condition, Yong Cao, Yuchuan Chu, Xiaoming He, Mingzhen Wei

Mathematics and Statistics Faculty Research & Creative Works

This paper proposes a domain decomposition method for the coupled stationary Navier-Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition in order to improve the efficiency of the finite element method. The physical interface conditions are directly utilized to construct the boundary conditions on the interface and then decouple the Navier-Stokes and Darcy equations. Newton iteration will be used to deal with the nonlinear systems. Numerical results are presented to illustrate the features of the proposed method.


Fast Pyrolysis Of Muconic Acid And Formic Acid Salts, Laura Duran May 2013

Fast Pyrolysis Of Muconic Acid And Formic Acid Salts, Laura Duran

Honors College

Lignocellulosic biomass is emerging as a sustainable resource for the production of alternative liquid fuels. As the need to lessen dependence on petroleum sources grows, lignocellulosic feedstocks are being investigated as a renewable, abundant source of energy. Chemical pulping processes include a high-lignin by-product, black liquor, which is already used for fuel in industry. Black liquor is burned to generate steam and electricity and to recover pulping chemicals. Currently, the thermochemical conversion of black liquor to liquid fuel is being researched at The University of Maine. In this black liquor research, an intermediate lignin-derived acid, muconic acid, and formic acid …


Ipads In The Science Laboratory: Experience In Designing And Implementing A Paperless Chemistry Laboratory Course, Tiffany Hesser, Pauline Schwartz Apr 2013

Ipads In The Science Laboratory: Experience In Designing And Implementing A Paperless Chemistry Laboratory Course, Tiffany Hesser, Pauline Schwartz

Chemistry and Chemical Engineering Faculty Publications

In the fall of 2012, 20 General Chemistry Honors students at the University of New Haven were issued the new iPad 3 to incorporate these devices both in the classroom and the laboratory. This paper will focus on the integration of the iPad into the laboratory curriculum while creating a paperless experience, an environment where no paper would enter or be used for the laboratory over the course of the year. Specific apps were chosen that would allow for an easy transition of course materials into an electronic format. After a transition period for the students and instructor, the overall …


Note: A Simple Thermal Gradient Annealing Unit For The Treatment Of Thin Films, C. J. Metting, Johnathan K. Bunn, Ellen A. Underwood, Yihao Zhu, G. Koley, T. Crawford, Jason R. Hattrick-Simpers Mar 2013

Note: A Simple Thermal Gradient Annealing Unit For The Treatment Of Thin Films, C. J. Metting, Johnathan K. Bunn, Ellen A. Underwood, Yihao Zhu, G. Koley, T. Crawford, Jason R. Hattrick-Simpers

Faculty Publications

A gradient annealing cell has been developed for the high-throughput study of thermalannealing effects on thin-film libraries in different environments. The inexpensive gradientannealing unit permits temperature gradients as large as 28 °C/mm and can accommodate samples ranging in length from 13 mm to 51 mm. The system was validated by investigating the effects of annealing temperature on the crystallinity, resistivity, and transparency of tin-doped indium oxide deposited on a glass substrate by magnetron sputtering. The unit developed in this work will permit the rapid optimization of materials properties such as crystallinity, homogeneity, and conductivity across a variety of applications.


Picture Of A Chelate In Exchange: The Crystal Structure Of Nahodotma, A 'Semi'-Hydrated Chelate, Katherine M. Payne, Edward J. Valente, Silvio Aime, Mauro Botta, Mark Woods Feb 2013

Picture Of A Chelate In Exchange: The Crystal Structure Of Nahodotma, A 'Semi'-Hydrated Chelate, Katherine M. Payne, Edward J. Valente, Silvio Aime, Mauro Botta, Mark Woods

Chemistry Faculty Publications and Presentations

Crystallography generally only provides static structural information. This can render it an ineffective technique for probing dynamic solution state processes. A crystal of HoDOTMA affords unique structures that effectively represent that of a lanthanide tetra-acetate chelate mid-way through the water exchange process.


Making Solar Cells, D. Venkataraman Jan 2013

Making Solar Cells, D. Venkataraman

Nanotechnology Teacher Summer Institutes

Overview of solar energy and photovoltaic cells. Making a cuprous oxide cell activity.


Self-Assembling Of Gold Nanoparticles Array For Electro-Sensing Applications, Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof Jan 2013

Self-Assembling Of Gold Nanoparticles Array For Electro-Sensing Applications, Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof

Chemical Engineering

A colloidal solution of citrate-stabilized gold nanoparticles (AuNPs) with an average size of ca. 2.6 nm has been prepared, characterized and further implemented in electro-sensing applications. This colloidal solution of AuNPs has been prepared via the reduction of NaAuCl4 with sodium tetrahydroborate (NaBH4) using trisodium citrate as a stabilizer. The optical properties of this solution have been studied with UV–Vis spectroscopy. Next, these AuNPs have been immobilized onto a polycrystalline Au (poly-Au) electrode with the assistance of benzenedimethanethiol (BDMT), which served as a binder. Attention has been taken to ensure the formation of a compact impermeable layer of BDMT on …


Novel Microwave Assisted Synthesis Of Zns Nanomaterials, Suresh Pillai, Michael Seery, Damian Synnott, John Colreavy, Stephen Hinder Jan 2013

Novel Microwave Assisted Synthesis Of Zns Nanomaterials, Suresh Pillai, Michael Seery, Damian Synnott, John Colreavy, Stephen Hinder

Articles

A novel ambient pressure microwave-assisted technique is developed in which silver and indium modified ZnS is synthesised. The as prepared ZnS is characterised by X-ray diffraction, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to defects in the crystal which induce mid energy levels in the band gap and lead to indoor light photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional …


Ultrasound For Improved Crystallisation In Food Processing, N. Misra, Navneet Deora, Brijesh Tiwari, Patrick Cullen Jan 2013

Ultrasound For Improved Crystallisation In Food Processing, N. Misra, Navneet Deora, Brijesh Tiwari, Patrick Cullen

Articles

Within the food industry, controlling crystallisation is a key factor governing food structure, texture and consumer appeal, with some foods requiring the promotion of crystallisation in a controlled manner (e.g. chocolate) and others a check (e.g. in honey). Sonocrystallisation is the application of ultrasound energy to control the nucleation of a crystallisation process. The use of power ultrasound provides a non-invasive approach to producing crystals with desired properties. Sonocrystallisation facilitates process control, primarily by modulating crystal size distribution and morphology. This paper details the governing mechanisms of sonocrystallisation. Proven and potential applications of the process in foods, including chocolates, honey, …


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Jan 2013

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Faculty Publications

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Review Of Us And Eu Initiatives Toward Development, Demonstration, And Commercialization Of Lignocellulosic Biofuels, Venkatesh Balan, David Chiaramonti, Sandeep Kumar Jan 2013

Review Of Us And Eu Initiatives Toward Development, Demonstration, And Commercialization Of Lignocellulosic Biofuels, Venkatesh Balan, David Chiaramonti, Sandeep Kumar

Civil & Environmental Engineering Faculty Publications

Advanced biofuels produced from lignocellulosic biomass offer an exciting opportunity to produce renewable liquid transportation fuels, biochemicals, and electricity from locally available agriculture and forest residues. The growing interest in biofuels from lignocellulosic feedstock in the United States (US) and the European Union (EU) can provide a path forward toward replacing petroleum-based fuels with sustainable biofuels which have the potential to lower greenhouse gas (GHG) emissions. The selection of biomass conversion technologies along with feedstock development plays a crucial role in the commercialization of next-generation biofuels. There has been synergy and, even with similar basic process routes, diversity in the …