Open Access. Powered by Scholars. Published by Universities.®
Physical Sciences and Mathematics Commons™
Open Access. Powered by Scholars. Published by Universities.®
Articles 1 - 1 of 1
Full-Text Articles in Physical Sciences and Mathematics
Using Machine Learning Techniques To Model Encoder/Decoder Pair For Non-Invasive Electroencephalographic Wireless Signal Transmission, Ernst Fanfan
Master of Science in Computer Science Theses
This study investigated the application and enhancement of Non-Invasive Brain-Computer Interfaces (NI-BCIs), focused on enhancing the efficiency and effectiveness of this technology for individuals with severe physical limitations. The core research goal was to improve current limitations associated with wires, noise, and invasive procedures often associated with BCI technology. The key discussed solution involves developing an optimized Encoder/Decoder (E/D) pair using machine learning techniques, particularly those borrowed from Generative Adversarial Networks (GAN) and other Deep Neural Networks, to minimize data transmission and ensure robustness against data degradation. The study highlighted the crucial role of machine learning in self-adjusting and isolating …