Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biostatistics

PDF

Dartmouth College

Humans

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Spectral Gene Set Enrichment (Sgse), H Robert Frost, Zhigang Li, Jason H. Moore Mar 2015

Spectral Gene Set Enrichment (Sgse), H Robert Frost, Zhigang Li, Jason H. Moore

Dartmouth Scholarship

Gene set testing is typically performed in a supervised context to quantify the association between groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they predominantly compute enrichment relative to clusters of the genomic variables with performance strongly dependent on the clustering algorithm and number of clusters. We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of the association between gene sets and empirical data sources. SGSE first computes …


New Malignancies After Squamous Cell Carcinoma And Melanomas: A Population-Based Study From Norway, Trude E. Robsahm, Margaret R. Karagas, Judy R. Rees, Astri Syse Mar 2014

New Malignancies After Squamous Cell Carcinoma And Melanomas: A Population-Based Study From Norway, Trude E. Robsahm, Margaret R. Karagas, Judy R. Rees, Astri Syse

Dartmouth Scholarship

Skin cancer survivors experience an increased risk for subsequent malignancies but the associated risk factors are poorly understood. This study examined the risk of a new primary cancer following an initial skin cancer and assessed risk factors associated with second primary cancers.


Balancing The Presentation Of Information And Options In Patient Decision Aids: An Updated Review, Purva Abhyankar, Robert J. Volk, Jennifer Blumenthal-Barby, Paulina Bravo, Angela Buchholz, Elissa Ozanne, Dale C. Vidal, Nananda Col, Peep Stalmeier Nov 2013

Balancing The Presentation Of Information And Options In Patient Decision Aids: An Updated Review, Purva Abhyankar, Robert J. Volk, Jennifer Blumenthal-Barby, Paulina Bravo, Angela Buchholz, Elissa Ozanne, Dale C. Vidal, Nananda Col, Peep Stalmeier

Dartmouth Scholarship

Standards for patient decision aids require that information and options be presented in a balanced manner; this requirement is based on the argument that balanced presentation is essential to foster informed decision making. If information is presented in an incomplete/non-neutral manner, it can stimulate cognitive biases that can unduly affect individuals’ knowledge, perceptions of risks and benefits, and, ultimately, preferences. However, there is little clarity about what constitutes balance, and how it can be determined and enhanced. We conducted a literature review to examine the theoretical and empirical evidence related to balancing the presentation of information and options.


Dna Methylation Arrays As Surrogate Measures Of Cell Mixture Distribution, Eugene Houseman, William P. Accomando, Devin C. Koestler, Brock C. Christensen, Carmen J. Marsit May 2012

Dna Methylation Arrays As Surrogate Measures Of Cell Mixture Distribution, Eugene Houseman, William P. Accomando, Devin C. Koestler, Brock C. Christensen, Carmen J. Marsit

Dartmouth Scholarship

There has been a long-standing need in biomedical research for a method that quantifies the normally mixed composition of leukocytes beyond what is possible by simple histological or flow cytometric assessments. The latter is restricted by the labile nature of protein epitopes, requirements for cell processing, and timely cell analysis. In a diverse array of diseases and following numerous immune-toxic exposures, leukocyte composition will critically inform the underlying immuno-biology to most chronic medical conditions. Emerging research demonstrates that DNA methylation is responsible for cellular differentiation, and when measured in whole peripheral blood, serves to distinguish cancer cases from controls.


Gpnn: Power Studies And Applications Of A Neural Network Method For Detecting Gene-Gene Interactions In Studies Of Human Disease, Alison A. Motsinger, Stephen L. Lee, George Mellick, Marylyn D. Ritchie Jan 2006

Gpnn: Power Studies And Applications Of A Neural Network Method For Detecting Gene-Gene Interactions In Studies Of Human Disease, Alison A. Motsinger, Stephen L. Lee, George Mellick, Marylyn D. Ritchie

Dartmouth Scholarship

The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease.


Principal Component Analysis For Predicting Transcription-Factor Binding Motifs From Array-Derived Data, Yunlong Liu, Matthew P Vincenti, Hiroki Yokota Nov 2005

Principal Component Analysis For Predicting Transcription-Factor Binding Motifs From Array-Derived Data, Yunlong Liu, Matthew P Vincenti, Hiroki Yokota

Dartmouth Scholarship

The responses to interleukin 1 (IL-1) in human chondrocytes constitute a complex regulatory mechanism, where multiple transcription factors interact combinatorially to transcription-factor binding motifs (TFBMs). In order to select a critical set of TFBMs from genomic DNA information and an array-derived data, an efficient algorithm to solve a combinatorial optimization problem is required. Although computational approaches based on evolutionary algorithms are commonly employed, an analytical algorithm would be useful to predict TFBMs at nearly no computational cost and evaluate varying modelling conditions. Singular value decomposition (SVD) is a powerful method to derive primary components of a given matrix. Applying SVD …