Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics

2016

Self-organized criticality

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Expanded Parameters In The Self-Organized Critical Forest Fire Model, Riley Self Jun 2016

Expanded Parameters In The Self-Organized Critical Forest Fire Model, Riley Self

Senior Theses

The forest fire model has been used to test the theory of Self-Organized Criticality as a model of complexity. The goal is to search for scale invariance in randomly generated forest fires using a computer simulation. In a previous model by B. Drossel and F. Schwabl,1 power-law behavior was seen when the nearest neighbors to a tree on fire catch on fire, and it has been assumed that if further trees also catch fire, then it will still exhibit self-organized criticality, showing scale invariance. Testing this assumption aids to the exploration of the applicability of self-organized criticality because the …


Protein Folding & Self-Organized Criticality, Arun Bajracharya May 2016

Protein Folding & Self-Organized Criticality, Arun Bajracharya

Senior Theses

Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is unknown. Experimental studies of the folding process are difficult as proteins are made of more than one subunit and possess a high degree of conformational flexibility. Theoretically, self-organized criticality (SOC) has provided a framework for understanding complex systems in various scientific disciplines through scale invariance and the associated "fractal" power law behavior. Evidence of this criticality phenomena has been found in neural systems, cell cultures, and anesthetized …