Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Il-17 Drives Copper Uptake And Activation Of Growth Pathways In Colorectal Cancer Cells In A Steap4-Dependent Manner, Evan Martin Jan 2018

Il-17 Drives Copper Uptake And Activation Of Growth Pathways In Colorectal Cancer Cells In A Steap4-Dependent Manner, Evan Martin

ETD Archive

Colorectal cancer is a disease characterized by abnormal, invasive cell growth beginning in the colon or rectum. The third most common type of cancer worldwide, approximately one million new cases of the disease are diagnosed across the globe annually, resulting in an estimated 700,000+ deaths. One major risk factor associated with development of colorectal cancer is the presence of chronic inflammation in the large intestine, also known as colitis. Inflammation is a complex immune response against harmful stimuli, characterized by symptoms including heat, redness, swelling and pain. One important molecular mediator of this process is interleukin 17 (IL-17), a pro-inflammatory …


Il-17 Drives Copper Uptake And Activation Of Growth Pathways In Colorectal Cancer Cells In A Steap4-Dependent Manner, Evan Martin Jan 2018

Il-17 Drives Copper Uptake And Activation Of Growth Pathways In Colorectal Cancer Cells In A Steap4-Dependent Manner, Evan Martin

ETD Archive

Colorectal cancer is a disease characterized by abnormal, invasive cell growth beginning in the colon or rectum. The third most common type of cancer worldwide, approximately one million new cases of the disease are diagnosed across the globe annually, resulting in an estimated 700,000+ deaths. One major risk factor associated with development of colorectal cancer is the presence of chronic inflammation in the large intestine, also known as colitis. Inflammation is a complex immune response against harmful stimuli, characterized by symptoms including heat, redness, swelling and pain. One important molecular mediator of this process is interleukin 17 (IL-17), a pro-inflammatory …


Structure And Activity Of Metallo-Peptides, Christian C. Tang Jul 2017

Structure And Activity Of Metallo-Peptides, Christian C. Tang

USF Tampa Graduate Theses and Dissertations

Metal ions are ubiquitously found in all living systems and play vital roles in supporting life forms by performing an array of biological activities. Such biological activities include binding and transforming organic molecules, and also acting as active centers and cofactors for catalysis of various acid-base and redox reactions in biological system. The main focus in bioinorganic chemistry is to elucidate the structural and functional roles of metals in biological systems. Among all transition metal ions, Cu2+ and Fe3+ are especially versatile and important due to their abilities to go through redox efficiently.

This dissertation can be divided …


Application Of Lipid Styryl Dye For Staining Intracytoplasmic Membranes In Gram-Negative Bacteria, Theodore J. Hammer Jan 2015

Application Of Lipid Styryl Dye For Staining Intracytoplasmic Membranes In Gram-Negative Bacteria, Theodore J. Hammer

Williams Honors College, Honors Research Projects

Intracytoplasmic membranes are structures that form within cells which help facilitate a variety of different metabolic processes. This feature of intracellular membranes makes them particularly valuable for studying compartmentalization and cell dynamics in bacteria. In the past, transmission electron microscopy has been the primary method for imaging bacteria with intracytoplasmic membranes. Because transmission electron microscopy takes images of a cell in fixed slices, it’s impossible to follow a cell’s growth and development over time. Fluorescence microscopy is a particularly effective method of measurement that can combat these issues when evaluating live bacterial cells. Here, standard biochemical laboratory procedures were used …


Multiscale Modeling Of Enzyme-Catalyzed Methanol Production By Particulate Methane Monooxygenase, Katherine K. Bearden Apr 2013

Multiscale Modeling Of Enzyme-Catalyzed Methanol Production By Particulate Methane Monooxygenase, Katherine K. Bearden

Doctoral Dissertations

In this work, the conversion of methane to methanol by the particulate Methane Monooxygenase (pMMO) enzyme is investigated using a multi-scale modeling approach. This enzyme participates in carbon cycling and aids in the removal of harmful atmospheric methane, converting it to methanol. The interaction between pMMO and a neighboring enzyme that is present in the same organism is studied, and the unknown pMMO active site is elucidated and tested for methane oxidation towards the production of methanol.

Fundamental knowledge of pMMO's mechanism is not fully understood. Understanding how this enzyme works in nature will provide information towards designing efficient synthetic …


Metallization Of Dna And Dna Origami Using A Pd Seeding Method, Yanli Geng Jan 2013

Metallization Of Dna And Dna Origami Using A Pd Seeding Method, Yanli Geng

Theses and Dissertations

In this dissertation, I developed a Pd seeding method in association with electroless plating, to successfully metallize both lambda DNA and DNA origami templates on different surfaces. On mica surfaces, this method offered a fast, simple process, and the ability to obtain a relatively high yield of metallized DNA nanostructures. When using lambda DNA as the templates, I studied the effect of Pd(II) activation time on the seed height and density, and an optimal activation time between 10 and 30 min was obtained. Based on the Pd seeds formed on DNA, as well as a Pd electroless plating solution, continuous …


Biological Oxidation Of Copper Sulfide Minerals, Delmar Boyd Davis Dec 1953

Biological Oxidation Of Copper Sulfide Minerals, Delmar Boyd Davis

Theses and Dissertations

This work represents a study of the biological oxidation of copper sulfide minerals. The principal objective of the study was to determine the extent of bacterial oxidation on copper containing sulfide minerals. It was also desired to determine if the bacteria could oxidize copper sulfides in the absence of iron. A better understanding of the nitrogen requirements of the organisms was desired. Minerals used in this study were Bingham Canyon Float Concentrate, chalcopyrite, covellite, calcocite, bornite, tetrahedrite, and reagent grade copper sulfide. The bacteria used were obtained from the mine waters of Bingham Canyon, Utah. To study the problem the …