Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei Dec 2018

Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei

Chemistry Faculty Publications

This paper presented the dataset of correction parameters used in the determination of the energy transfer efficiencies from the spectrum-based fluorescence resonance energy transfer (FRET) measurement in a trimeric membrane protein AcrB. The cyan fluorescent protein (CFP) and yellow fluorescent protein (YPet) were used as the donor and acceptor, respectively. Two AcrB fusion proteins were constructed, AcrB-CFP and AcrB-YPet. The proteins were co-expressed in Escherichia coli cells, and energy transfer efficiency were determined in live cells. To obtain reliable energy transfer data, a complete set of correction parameters need to be first determined to accommodate for factors such as background …


Cross Photoreaction Of Glyoxylic And Pyruvic Acids In Model Aqueous Aerosol, Sha-Sha Xia, Alexis J. Eugene, Marcelo I. Guzman Jul 2018

Cross Photoreaction Of Glyoxylic And Pyruvic Acids In Model Aqueous Aerosol, Sha-Sha Xia, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

Aerosols of variable composition, size, and shape are associated with public health concerns as well as with light-particle interactions that play a role in the energy balance of the atmosphere. Photochemical reactions of 2-oxocarboxylic acids in the aqueous phase are now known to contribute to the total secondary organic aerosol (SOA) budget. This work explores the cross reaction of glyoxylic acid (GA) and pyruvic acid (PA) in water, the two most abundant 2-oxocarboxylic acids in the atmosphere, under solar irradiation and dark thermal aging steps. During irradiation, PA and GA are excited and initiate proton-coupled electron transfer or hydrogen abstraction …


Distinct Properties Underlie Flavin-Based Electron Bifurcation In A Novel Electron Transfer Flavoprotein Fixab From Rhodopseudomonas Palustris, H. Diessel Duan, Carolyn E. Lubner, Monika Tokmina-Lukaszewska, George H. Gauss, Brian Bothner, Paul W. King, John W. Peters, Anne-Frances Miller Feb 2018

Distinct Properties Underlie Flavin-Based Electron Bifurcation In A Novel Electron Transfer Flavoprotein Fixab From Rhodopseudomonas Palustris, H. Diessel Duan, Carolyn E. Lubner, Monika Tokmina-Lukaszewska, George H. Gauss, Brian Bothner, Paul W. King, John W. Peters, Anne-Frances Miller

Chemistry Faculty Publications

A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV–visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and to …


Oxidation Of Substituted Catechols At The Air-Water Interface: Production Of Carboxylic Acids, Quinones, And Polyphenols, Elizabeth A. Pillar, Marcelo I. Guzman Apr 2017

Oxidation Of Substituted Catechols At The Air-Water Interface: Production Of Carboxylic Acids, Quinones, And Polyphenols, Elizabeth A. Pillar, Marcelo I. Guzman

Chemistry Faculty Publications

Anthropogenic activities contribute benzene, toluene, and anisole to the environment, which in the atmosphere are converted into the respective phenols, cresols, and methoxyphenols by fast gas-phase reaction with hydroxyl radicals (HO(•)). Further processing of the latter species by HO(•) decreases their vapor pressure as a second hydroxyl group is incorporated to accelerate their oxidative aging at interfaces and in aqueous particles. This work shows how catechol, pyrogallol, 3-methylcatechol, 4-methylcatechol, and 3-methoxycatechol (all proxies for oxygenated aromatics derived from benzene, toluene, and anisole) react at the air-water interface with increasing O3(g) during τc ≈ 1 μs contact time and contrasts their …


Reactivity Of Ketyl And Acetyl Radicals From Direct Solar Actinic Photolysis Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman Mar 2017

Reactivity Of Ketyl And Acetyl Radicals From Direct Solar Actinic Photolysis Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The variable composition of secondary organic aerosols (SOA) contributes to the large uncertainty for predicting radiative forcing. A better understanding of the reaction mechanisms leading to aerosol formation such as for the photochemical reaction of aqueous pyruvic acid (PA) at λ ≥ 305 nm can contribute to constrain these uncertainties. Herein, the photochemistry of aqueous PA (5-300 mM) continuously sparged with air is re-examined in the laboratory under comparable irradiance at 38° N at noon on a summer day. Several analytical methods are employed to monitor the time series of the reaction, including (1) the derivatization of carbonyl (C═O) functional …


Comparative Proteomic Analyses Of The Parietal Lobe From Rhesus Monkeys Fed A High-Fat/Sugar Diet With And Without Resveratrol Supplementation, Relative To A Healthy Diet: Insights Into The Roles Of Unhealthy Diets And Resveratrol On Function, Aaron M. Swomley, Judy C. Triplett, Jeriel T. Keeney, Govind Warrier, Kevin J. Pearson, Julie A. Mattison, Rafael De Cabo, Jian Cai, Jon B. Klein, D. Allan Butterfield Jan 2017

Comparative Proteomic Analyses Of The Parietal Lobe From Rhesus Monkeys Fed A High-Fat/Sugar Diet With And Without Resveratrol Supplementation, Relative To A Healthy Diet: Insights Into The Roles Of Unhealthy Diets And Resveratrol On Function, Aaron M. Swomley, Judy C. Triplett, Jeriel T. Keeney, Govind Warrier, Kevin J. Pearson, Julie A. Mattison, Rafael De Cabo, Jian Cai, Jon B. Klein, D. Allan Butterfield

Chemistry Faculty Publications

A diet consisting of a high intake of saturated fat and refined sugars is characteristic of a Western-diet and has been shown to have a substantial negative effect on human health. Expression proteomics were used to investigate changes to the parietal lobe proteome of rhesus monkeys consuming either a high fat and sugar (HFS) diet, a HFS diet supplemented with resveratrol (HFS+RSV), or a healthy control diet for 2 years. Here we discuss the modifications in the levels of 12 specific proteins involved in various cellular systems including metabolism, neurotransmission, structural integrity, and general cellular signaling following a nutritional intervention. …


Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman Apr 2016

Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

The reductive tricarboxylic acid (rTCA) cycle is an important central biosynthetic pathway that fixes CO2 into carboxylic acids. Among the five reductive steps in the rTCA cycle, the two-electron reduction of fumarate to succinate proceeds nonenzymatically on the surface of photoexcited sphalerite (ZnS) colloids suspended in water. This model reaction is chosen to systematically study the surface photoprocess occurring on ZnS in the presence of [Na2S] (1–10 mM) hole scavenger at 15 °C. Experiments at variable pH (5–10) indicate that monodissociated fumaric acid is the primary electron acceptor forming the monoprotic form of succinic acid. The following …


It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield Jan 2016

It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield

Chemistry Faculty Publications

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency …


Heterogeneous Oxidation Of Catechol, Elizabeth A. Pillar, Ruixin Zhou, Marcelo I. Guzman Sep 2015

Heterogeneous Oxidation Of Catechol, Elizabeth A. Pillar, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air–solid interface under variable relative humidity (RH = 0–90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10–6 occurs for …