Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Protonic Capacitor: Elucidating The Biological Significance Of Mitochondrial Cristae Formation, James Weifu Lee Jun 2020

Protonic Capacitor: Elucidating The Biological Significance Of Mitochondrial Cristae Formation, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

For decades, it was not entirely clear why mitochondria develop cristae? The work employing the transmembrane-electrostatic proton localization theory reported here has now provided a clear answer to this fundamental question. Surprisingly, the transmembrane-electrostatically localized proton concentration at a curved mitochondrial crista tip can be significantly higher than that at the relatively flat membrane plane regions where the proton-pumping respiratory supercomplexes are situated. The biological significance for mitochondrial cristae has now, for the first time, been elucidated at a protonic bioenergetics level: 1) The formation of cristae creates more mitochondrial inner membrane surface area and thus more protonic capacitance for …


Size-Dependent Inhibitory Effects Of Antibiotic Nanocarriers On Filamentation Of E. Coli, Preeyaporn Songkiatisak, Feng Ding, Pavan Kumar Cherukuri, Xiao-Hong Nancy Xu May 2020

Size-Dependent Inhibitory Effects Of Antibiotic Nanocarriers On Filamentation Of E. Coli, Preeyaporn Songkiatisak, Feng Ding, Pavan Kumar Cherukuri, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Multidrug membrane transporters exist in both prokaryotic and eukaryotic cells and cause multidrug resistance (MDR), which results in an urgent need for new and more effective therapeutic agents. In this study, we used three different sized antibiotic nanocarriers to study their mode of action and their size-dependent inhibitory effects against Escherichia coli (E. coli). Antibiotic nanocarriers (AgMUNH–Oflx NPs) with 8.6 × 102, 9.4 × 103 and 6.5 × 105 Oflx molecules per nanoparticle (NP) were prepared by functionalizing Ag NPs (2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm) with a monolayer …


Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov May 2020

Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

The principal bioeffect of the nanosecond pulsed electric field (nsPEF) is a lasting cell membrane permeabilization, which is often attributed to the formation of nanometer-sized pores. Such pores may be too small for detection by the uptake of fluorescent dyes. We tested if Ca2+, Cd2+, Zn2+, and Ba2+ ions can be used as nanoporation markers. Time-lapse imaging was performed in CHO, BPAE, and HEK cells loaded with Fluo-4, Calbryte, or Fluo-8 dyes. Ca2+ and Ba2+ did not change fluorescence in intact cells, whereas their entry after nsPEF increased fluorescence within <1 ms. The threshold for one 300-ns pulse was at 1.5–2 kV/cm, much lower than >7 …


A Halogen Bonding Perspective On Iodothyronine Deiodinase Activity, Eric S. Marsan, Craig A. Bayse Mar 2020

A Halogen Bonding Perspective On Iodothyronine Deiodinase Activity, Eric S. Marsan, Craig A. Bayse

Chemistry & Biochemistry Faculty Publications

Iodothyronine deiodinases (Dios) are involved in the regioselective removal of iodine from thyroid hormones (THs). Deiodination is essential to maintain TH homeostasis, and disruption can have detrimental effects. Halogen bonding (XB) to the selenium of the selenocysteine (Sec) residue in the Dio active site has been proposed to contribute to the mechanism for iodine removal. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are known disruptors of various pathways of the endocrine system. Experimental evidence shows PBDEs and their hydroxylated metabolites (OH-BDEs) can inhibit Dio, while data regarding PCB inhibition are limited. These xenobiotics could inhibit Dio activity by competitively …


Antibiotic Drug Nanocarriers For Probing Of Multidrug Abc Membrane Transporter Of Bacillus Subtilis, Pavan Kumar Cherukuri, Preeyaporn Songkiatisak, Feng Ding, Jeam-Michel Jault, Xiao-Hong Nancy Xu Jan 2020

Antibiotic Drug Nanocarriers For Probing Of Multidrug Abc Membrane Transporter Of Bacillus Subtilis, Pavan Kumar Cherukuri, Preeyaporn Songkiatisak, Feng Ding, Jeam-Michel Jault, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Multidrug membrane transporters can extrude a wide range of substrates, which cause multidrug resistance and ineffective treatment of diseases. In this study, we used three different sized antibiotic drug nanocarriers to study their size-dependent inhibitory effects against Bacillus subtilis. We functionalized 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm silver nanoparticles (Ag NPs) with a monolayer of 11-amino-1-undecanethiol and covalently linked them with antibiotics (ofloxacin, Oflx). The labeling ratios of antibiotics with NPs are 8.6 × 102, 9.4 × 103, and 6.5 × 105 Oflx molecules per NP, respectively. We designed …