Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Characterization Of Polymers Containing Ferrocene And Imidazole With Density Functional Theory, Eric Mullins Apr 2018

Characterization Of Polymers Containing Ferrocene And Imidazole With Density Functional Theory, Eric Mullins

Electronic Theses & Dissertations

Electrochemical and UV-Vis studies on these polymers in the presence of aqueous solutions containing metal ions have revealed significant modifications in the electrochemical properties and absorption spectra. These modifications in electrochemical properties could be attributed to the ability of the imidazole to coordinate with metal ions, increasing its electron deficiency and enhancing oxidization of the nearby ferrocene moiety if it is in close proximity with imidazole. However, the mechanism of interaction between the imidazole and metal ions, as well as the equilibrium geometry of the resulting polymer-metal ion complex is unknown.

In this thesis, density functional theory (DFT) was used …


The Promise Of Piezoelectric Polymers, Timothy D. Usher, Kimberley R. Cousins, Renwu Zhang, Stephen Ducharme Jan 2018

The Promise Of Piezoelectric Polymers, Timothy D. Usher, Kimberley R. Cousins, Renwu Zhang, Stephen Ducharme

Stephen Ducharme Publications

Recent advances provide new opportunities in the field of polymer piezoelectric materials. Piezoelectric materials provide unique insights to the fundamental understanding of the solid state. In addition, piezoelectric materials have a wide range of applications, representing billions of dollars of commercial applications. However, inorganic piezoelectric materials have limitations that polymer ferroelectric materials can overcome, if certain challenges can be addressed. This mini-review is a practical summary of the current research and future directions in the investigation and application of piezoelectric materials with an emphasis on polymeric piezoelectric materials. We will assume that the reader is well versed in the subject …


Hi-Fidelity Simulation Of The Self-Assembly And Dynamics Of Colloids And Polymeric Solutions With Long Range Interactions, Mahdy Malekzadeh Moghani Dec 2014

Hi-Fidelity Simulation Of The Self-Assembly And Dynamics Of Colloids And Polymeric Solutions With Long Range Interactions, Mahdy Malekzadeh Moghani

Doctoral Dissertations

Modeling the equilibrium properties and dynamic response of the colloidal and polymeric solutions provides valuable insight into numerous biological and industrial processes and facilitates development of novel technologies. To this end, the centerpiece of this research is to incorporate the long range electrostatic or hydrodynamic interactions via computationally efficient algorithms and to investigate the effect of these interactions on the self-assembly of colloidal particles and dynamic properties of polymeric solutions. Specifically, self-assembly of a new class of materials, namely bipolar Janus nano-particles, is investigated via molecular dynamic simulation in order to establish the relationship between individual particle characteristics, such as …


The Upscattering Of Ultracold Neutrons From The Polymer (C6h12)N, Eduard I. Sharapov, Christopher L. Morris, Mark Makela, Andy Saunders, Evan R. Adamek, Leah J. Broussard, Chris B. Cude-Woods, Deion E. Fellers, Peter Geltenbort, Monika Hartl, Siraj I. Hasan, Kevin P. Hickerson, Gary E. Hogan, Anthony T. Holley, C. M. Lavelle, Chen-Yu Liu, Michael P. Mendenhall, Jose Ortiz, Robert W. Pattie, David G. Phillips, John Ramsey, Daniel J. Salvat, Susan J. Seestrom, Erik Shaw, Sky Sjue, Walter E. Sondheim, Brittany Vorndick, Zhehui Wang, Tanner L. Womack, Andrew R. Young, B. A. Zeck Dec 2013

The Upscattering Of Ultracold Neutrons From The Polymer (C6h12)N, Eduard I. Sharapov, Christopher L. Morris, Mark Makela, Andy Saunders, Evan R. Adamek, Leah J. Broussard, Chris B. Cude-Woods, Deion E. Fellers, Peter Geltenbort, Monika Hartl, Siraj I. Hasan, Kevin P. Hickerson, Gary E. Hogan, Anthony T. Holley, C. M. Lavelle, Chen-Yu Liu, Michael P. Mendenhall, Jose Ortiz, Robert W. Pattie, David G. Phillips, John Ramsey, Daniel J. Salvat, Susan J. Seestrom, Erik Shaw, Sky Sjue, Walter E. Sondheim, Brittany Vorndick, Zhehui Wang, Tanner L. Womack, Andrew R. Young, B. A. Zeck

Robert W. Pattie Jr.

It is generally accepted that the main cause of ultracold neutron (UCN) losses in storage traps is upscattering to the thermal energy range by hydrogen adsorbed on the surface of the trap walls. However, the data on which this conclusion is based are poor and contradictory. Here we report a measurement, performed at the Los Alamos National Laboratory UCN source, of the average energy of the flux of upscattered neutrons after the interaction of UCN with hydrogen bound in the semicrystalline polymer PMP (trade name TPX), [C6H12]n. Our analysis, performed with the mcnp code which applies …