Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Simulating Many Body Localization With Rydberg Atoms, Alicia Handian May 2021

Simulating Many Body Localization With Rydberg Atoms, Alicia Handian

Physics and Astronomy Honors Papers

In thermodynamics, interacting systems are expected to achieve equilibrium with one another over the course of time. However, there are exceptions to this rule. When systems localize, or fail to reach equilibrium, information about the initial state of the system is preserved and locally observable after long periods of time. Many-body localization focuses on systems of interacting particles that fail to thermalize. We have developed a simulation that models the behavior of a many-body quantum system. The simulation is inspired by experiments conducted by Liu, et al., in their recent publication “Time Dependence of Few Body Forster Interactions Among Ultracold …


Microwave Assisted Dipole-Dipole Transitions, Jacob T. Paul Apr 2017

Microwave Assisted Dipole-Dipole Transitions, Jacob T. Paul

Physics and Astronomy Honors Papers

We explore this two photon assisted transition through computational and numerical analysis of possible energy levels. We calculate the matrix elements of the energy transition in detail discussing constants and the quantum mechanical possibilities of energy exchanges in these systems.

The goal is to better understand the energy exchange, so that moving forward we can control it. This paper covers the theoretical ends to controlling the energy transition by the way of two photon assisted transitions. The energy transitions take place between a dipole-dipole interaction, and a microwave photon.


Quantum Mechanical Interference In The Field Ionization Of Rydberg Atoms, Jacob A. Hollingsworth Apr 2016

Quantum Mechanical Interference In The Field Ionization Of Rydberg Atoms, Jacob A. Hollingsworth

Physics and Astronomy Honors Papers

Rydberg atoms are traditionally alkali metal atoms with their valence electron excited to a state of very large principle quantum number. They possess exaggerated properties, and are consequently an attractive area of study for physicists. An example of their exaggerated properties is seen in their response to the presence of an applied electric field. In this work, we study the energy distribution of Rydberg atoms when subjected to a dynamic electric field intended to ionize them.

We excite 85Rb atoms to a superposition of the 46D5/2 |mj| = 1/2 and |mj| = 3/2 states …


The Role Of Continuum States In The Field Ionization Of Rydberg Atoms, Michael P. Vennettilli Apr 2016

The Role Of Continuum States In The Field Ionization Of Rydberg Atoms, Michael P. Vennettilli

Physics and Astronomy Honors Papers

In an experiment performed by our collaborators at Bryn Mawr, we excite rubidium-85 to a coherent superposition of the different |mj| splittings of the 37d5/2 state induced by a small electric field. After waiting for some variable delay time, we apply a time-dependent electric field to ionize the atom and record the ionized current that arrives at the detector. Due to the initial superposition, we observe an interference pattern that depends on the delay time. This thesis describes my continued work with Dr. Carroll to develop a computational model of this experiment. Our initial method …


Using A Genetic Algorithm To Optimize An Electric Field Ionization Pulse, Tamas Budner Apr 2016

Using A Genetic Algorithm To Optimize An Electric Field Ionization Pulse, Tamas Budner

Physics and Astronomy Honors Papers

Experimentally, we would like to demonstrate the process of selective field ionization of electrons as evidence of quantum control in a system of ultracold rubidium-85 Rydberg atoms. In order to accomplish this, an electric field pulse which is optimized to take an initial Rydberg electron state and produce the desired ionization spectra is necessary. We utilize techniques from artificial intelligence to develop a genetic algorithm for the optimization process. Our algorithm is computationally tested on an artificially constructed quantum system consisting of four energy states. In evaluating the viability of any given field pulse, we calculate the probability of an …