Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Quantum Control Via A Genetic Algorithm Of The Field Ionization Pathway Of A Rydberg Electron, Vincent C. Gregoric, Xinyue Kang, Zhimin Cheryl Liu, Zoe A. Rowley, Thomas J. Carroll, Michael W. Noel Aug 2017

Quantum Control Via A Genetic Algorithm Of The Field Ionization Pathway Of A Rydberg Electron, Vincent C. Gregoric, Xinyue Kang, Zhimin Cheryl Liu, Zoe A. Rowley, Thomas J. Carroll, Michael W. Noel

Physics and Astronomy Faculty Publications

Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n*)4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus …


One More Hard Three-Loop Correction To Parapositronium Energy Levels, Michael I. Eides, Valery A. Shelyuto Jul 2017

One More Hard Three-Loop Correction To Parapositronium Energy Levels, Michael I. Eides, Valery A. Shelyuto

Physics and Astronomy Faculty Publications

A hard three-loop correction to parapositronium energy levels of order 7 is calculated. This nonlogarithmic contribution is due to the insertions of one-loop photon propagator in the fermion lines in the diagrams with virtual two-photon annihilation. We obtained ΔE = 0.03297(2)(7 / π3) for this energy shift.


Atomic Data Revisions For Transitions Relevant To Observations Of Interstellar, Circumgalactic, And Intergalactic Matter, Frances H. Cashman, Varsha P. Kulkarni, Romas Kisielius, Gary J. Ferland, Pavel Bogdanovich May 2017

Atomic Data Revisions For Transitions Relevant To Observations Of Interstellar, Circumgalactic, And Intergalactic Matter, Frances H. Cashman, Varsha P. Kulkarni, Romas Kisielius, Gary J. Ferland, Pavel Bogdanovich

Physics and Astronomy Faculty Publications

Measurements of element abundances in galaxies from astrophysical spectroscopy depend sensitively on the atomic data used. With the goal of making the latest atomic data accessible to the community, we present a compilation of selected atomic data for resonant absorption lines at wavelengths longward of 911.753 Å (the H I Lyman limit), for key heavy elements (heavier than atomic number 5) of astrophysical interest. In particular, we focus on the transitions of those ions that have been observed in the Milky Way interstellar medium (ISM), the circumgalactic medium (CGM) of the Milky Way and/or other galaxies, and the intergalactic medium …


Neutron-Unbound Excited States Of 23n, M. Jones, T. Baumann, J. Brett, J. Bullaro, P. A. Deyoung, J.E. Finck, N. Frank, K. Hammerton, J. Hinnefeld, Z. Kohley, A. N. Kuchera, J. Pereira, A. Rabeh, J. K. Smith, A. Spyrou, Sharon L. Stephenson, K. Stiefel, M. Tuttle-Timm, R. G.T. Zegers, M. Thoennessen Apr 2017

Neutron-Unbound Excited States Of 23n, M. Jones, T. Baumann, J. Brett, J. Bullaro, P. A. Deyoung, J.E. Finck, N. Frank, K. Hammerton, J. Hinnefeld, Z. Kohley, A. N. Kuchera, J. Pereira, A. Rabeh, J. K. Smith, A. Spyrou, Sharon L. Stephenson, K. Stiefel, M. Tuttle-Timm, R. G.T. Zegers, M. Thoennessen

Physics and Astronomy Faculty Publications

Neutron unbound states in 23N were populated via proton knockout from an 83.4 MeV/nucleon 24O beam on a liquid deuterium target. The two-body decay energy displays two peaks at E1∼100keV and E2∼1MeV with respect to the neutron separation energy. The data are consistent with shell model calculations predicting resonances at excitation energies of ∼3.6MeV and ∼4.5MeV. The selectivity of the reaction implies that these states correspond to the first and second 3/2− states. The energy of the first state is about 1.3 MeV lower than the first excited 2+ in 24O. This decrease is largely due to coupling with the …