Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Measurement Of Γ-Emission Branching Ratios For 154,156,158Gd Compound Nuclei: Tests Of Surrogate Nuclear Reaction Approximations For (N,Γ) Cross Sections, N. D. Scielzo Mar 2010

Measurement Of Γ-Emission Branching Ratios For 154,156,158Gd Compound Nuclei: Tests Of Surrogate Nuclear Reaction Approximations For (N,Γ) Cross Sections, N. D. Scielzo

Physics Faculty Publications

The surrogate nuclear reaction method can be used to determine neutron-induced reaction cross sections from measured decay properties of a compound nucleus created using a different reaction and calculated formation cross sections. The reliability of (n,γ) cross sections determined using the Weisskopf-Ewing and ratio approximations are explored for the 155, 157Gd(n,γ) reactions. Enriched gadolinium targets were bombarded with 22-MeV protons and γ rays were detected in coincidence with scattered protons using the Silicon Telescope Array for Reaction Studies/Livermore-Berkeley Array for Collaborative Experiments (STARS/LiBerACE) silicon and germanium detector arrays. The γ-emission probabilities for the 154, 156, …


Demonstration Of A Neutral Atom Controlled-Not Quantum Gate, L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, Todd A. Johnson, T. G. Walker, M. Saffman Jan 2010

Demonstration Of A Neutral Atom Controlled-Not Quantum Gate, L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, Todd A. Johnson, T. G. Walker, M. Saffman

Physics Faculty Publications

We present the first demonstration of a CNOT gate between two individually addressed neutral atoms. Our implementation of the CNOT uses Rydberg blockade interactions between neutral atoms held in optical traps separated by >8  μm. Using two different gate protocols we measure CNOT fidelities of F=0.73 and 0.72 based on truth table probabilities. The gate was used to generate Bell states with fidelity F=0.48±0.06. After correcting for atom loss we obtain an a posteriori entanglement fidelity of F=0.58.


Excitation-Induced Germanium Quantum Dot Formation On Si (100)-(2×1), Ali Oguz Er, Hani E. Elsayed-Ali Jan 2010

Excitation-Induced Germanium Quantum Dot Formation On Si (100)-(2×1), Ali Oguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on the self-assembly of Ge quantum dots grown by pulsed laser deposition on Si (100)-(2×1) was studied. In situ reflection high-energy electron diffraction and ex situ atomic force microscopy were used to probe the quantum dot structure and morphology. At room temperature, applying the excitation laser decreased the surface roughness of the grown Ge film. With surface electronic excitation, crystalline Ge quantum dots were formed at 250 °C, a temperature too low for their formation without excitation. At a substrate temperature of 390 °C, electronic excitation during growth was found to improve the …


Infrared Skin Damage Thresholds From 1940-Nm Continuous-Wave Laser Exposures, Jeffrey W. Oliver, David J. Stolarski, Gary D. Noojin, Harvey M. Hodnett, Corey A. Harbert, Kurt J. Schuster, Michaedl F. Foltz, Semih S. Kumru, Clarence P. Cain, C. J. Finkeldei, Gavin Buffington, Isaac D. Noojin, Robert J. Thomas Jan 2010

Infrared Skin Damage Thresholds From 1940-Nm Continuous-Wave Laser Exposures, Jeffrey W. Oliver, David J. Stolarski, Gary D. Noojin, Harvey M. Hodnett, Corey A. Harbert, Kurt J. Schuster, Michaedl F. Foltz, Semih S. Kumru, Clarence P. Cain, C. J. Finkeldei, Gavin Buffington, Isaac D. Noojin, Robert J. Thomas

Physics Faculty Publications

A series of experiments are conducted in vivo using Yucatan mini-pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1940-nm continuous-wave thulium fiber laser irradiation. Experiments employ exposure durations from 10 ms to 10 s and beam diameters of approximately 4.8 to 18 mm. Thermal imagery data provide a time-dependent surface temperature response from the laser. A damage endpoint of minimally visible effect is employed to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Results are compared …