Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Imaging-Based Parametric Resonance In An Optical Dipole-Atom Trap, S. Balik, A. L. Win, M. D. Havey Jan 2009

Imaging-Based Parametric Resonance In An Optical Dipole-Atom Trap, S. Balik, A. L. Win, M. D. Havey

Physics Faculty Publications

We report sensitive detection of parametric resonances in a high-density sample of ultracold 87Rb atoms confined to a far-off-resonance optical dipole trap. Fluorescence imaging of the expanded ultracold atom cloud after a period of parametric excitation shows significant modification of the atomic spatial distribution and has high sensitivity compared with traditional measurements of parametrically driven trap loss. Using this approach, a significant shift of the parametric resonance frequency is observed and attributed to the anharmonic shape of the dipole trap potential. 2009 The American Physical Society.


Precise Measurement Of The Neutron Magnetic Form Factor Gnm In The Few-Gev² Region, Clas Collaboration, J. Lachniet, H. Bagdasaryan, S. Bültmann, N. Kalantarians, G. E. Dodge, T. A. Forest, G. Gavalian, C. E. Hyde-Wright, A. Klien, S. E. Kuhn, M. R. Niroula, R. A. Niyazov, L. M. Qin, L. B. Weinstein, J. Zhang Jan 2009

Precise Measurement Of The Neutron Magnetic Form Factor Gnm In The Few-Gev² Region, Clas Collaboration, J. Lachniet, H. Bagdasaryan, S. Bültmann, N. Kalantarians, G. E. Dodge, T. A. Forest, G. Gavalian, C. E. Hyde-Wright, A. Klien, S. E. Kuhn, M. R. Niroula, R. A. Niyazov, L. M. Qin, L. B. Weinstein, J. Zhang

Physics Faculty Publications

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q2 = 1.0–4.8  GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data