Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Improvements For The T0c+ Geometry Of The Fast Interaction Trigger (Fit) Upgrade To Alice At The Cern Lhc, Noah Miller Jun 2017

Improvements For The T0c+ Geometry Of The Fast Interaction Trigger (Fit) Upgrade To Alice At The Cern Lhc, Noah Miller

Physics

The purpose of the ALICE experiment at CERN is to investigate the properties of the strongly interacting quark-gluon plasma formed in the high-energy collisions of lead nuclei in the CERN Large Hadron Collider. ALICE has been collecting data since 2009. The upcoming upgrade of the CERN LHC injectors during 2019-20 will boost the luminosity and the collision rate beyond the design parameters for several of the key ALICE detectors including the forward trigger detectors. The new Fast Interaction Trigger (FIT) will enable ALICE to discriminate beam-beam interactions with a 99% efficiency for the collisions generated by the LHC at a …


My Contributions To The Cryogenic Underground Observatory For Rare Events Experiment And The Utilization Of Geant4 In Their Analysis, Kevin Armenta Jun 2017

My Contributions To The Cryogenic Underground Observatory For Rare Events Experiment And The Utilization Of Geant4 In Their Analysis, Kevin Armenta

Physics

First, a brief introduction and background of the basics of particle physics and the Standard Model is discussed in order to give context to nature of the neutrinoless double beta decay ($2\nu\beta\beta$) and why it is so interesting to particle physicists. Next, the Cryogenic Underground Observatory for Rare Events (CUORE) experiment is discussed in detail, explaining the rational behind the experimental setup and detection process. Finally, I conclude by discussing Geant4, an important software toolkit used in particle physics, and how it is utilized in the CUORE experiment.


Developing An Imaging System To Monitor Atom Traps For Neutral Atom Quantum Computing, Jenna Valdez Mar 2017

Developing An Imaging System To Monitor Atom Traps For Neutral Atom Quantum Computing, Jenna Valdez

Physics

Quantum computing exploits the laws of quantum mechanics to exponentially increase computing rate for certain processes. A realized quantum computer could break encryptions and simulate large quantum systems previously unbreakable and unattainable with classical computers. Neutral atom quantum computing is a viable candidate for building these devices that satisfies four of the five criteria for a successful quantum computer. We are exploring a novel method in creating neutral atom qubits that involves a magneto-optical trap and a dipole trap created in the diffraction pattern behind an array of pinholes. The magneto-optical trap works to cool the atoms and centralize them …