Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

A Theoretical Investigation Of Small Organic Molecules On Transition Metal Surfaces, Walter Malone May 2019

A Theoretical Investigation Of Small Organic Molecules On Transition Metal Surfaces, Walter Malone

Electronic Theses and Dissertations

With the ever growing number of proposed desnity functional theory (DFT) functionals it becomes necessary to thoroughly screen any new method to determine its merit. Especially relevant methods include a proper description of the van der Waals (vdW) interaction, which can prove vital to a correct description of a myriad of systems of technological importance. The first part of this dissertation explores the utility of several vdW-inclusive DFT functionals including optB86b-vdW, optB88-vdW, optPBE-vdW, revPBE-vdW, rPW86-vdW2, and SCAN+rVV10 by applying them to model systems of small organic molecules, pyridine and thiophene, on transition metal surfaces. Overall, we find the optB88-vdW functional …


Chemistry And Dissipation At Mineral Surfaces In The Space Environment, William Tucker May 2019

Chemistry And Dissipation At Mineral Surfaces In The Space Environment, William Tucker

Electronic Theses and Dissertations

The composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation, experimental results are first presented which demonstrate that mineral grains subjected to high temperatures in a reducing environment lead to iron nanoparticles which are strongly catalytic for the …


Nanoscale Thermal Transport In Thermally Isolated Nanostructures, Brian G. Green Jan 2019

Nanoscale Thermal Transport In Thermally Isolated Nanostructures, Brian G. Green

Electronic Theses and Dissertations

Experiments with nanoscale structures, designed to measure some of their thermal and optical properties, are the subjects of this dissertation. We studied the transport of thermal energy in systems of nanoparticles, and used the method of transient thermoreflectance to monitor those dynamics, and assess whether thermal transport features special to nanoscale systems emerged. This same method was also used to study the thermal transport of a single system of layered membranes. Optical properties were investigated using computational simulations of a nanoparticle system, using the method of finite-difference time-domain simulation.

In nanoparticle studies, there are two features of interest special to …


Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran Jan 2019

Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran

Electronic Theses and Dissertations

We theoretically and experimentally investigate the transfer of orbital angular momentum from light to an ensemble of semiconductor-based nanostructures composed of lead sulfide quantum dots. Using an ensemble of quantum dots offers a higher cross-section and more absorption of twisted light fields compared to experimentally challenging single-nanostructure measurements. However, each quantum dot (except for on-center) sees a displaced light beam parallel to its own axis of symmetry. The transition matrix elements for the light-matter interaction are calculated by expressing the displaced light beam in terms of the appropriate light field centered on the nanoparticles. The resulting transition rate induced by …


Quantized Circulation In Racetrack Atomtronic Circuits At Non-Zero Temperature, Benjamin R. Eller Jan 2019

Quantized Circulation In Racetrack Atomtronic Circuits At Non-Zero Temperature, Benjamin R. Eller

Electronic Theses and Dissertations

We extend previous theoretical investigations of the creation of quantized circulation states by stirring Bose-Einstein condensates (BEC) confined in ``racetrack" potentials. The previous study, {\em Producing Smooth Flow in Atom Circuits by Stirring}, used the Gross-Pitaevskii equation (GPE), which is valid at $T=0$ K. Here we use a non-zero temperature model based on the Zaremba, Nikuni, Griffin (ZNG) theory to simulate stirring racetrack BECs. The two main goals of this thesis are 1) to understand the effects of temperature on the production of circulation and 2) to understand the mechanism by which the circulation is excited. We find that it …