Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

William & Mary

Dissertations, Theses, and Masters Projects

Theses/Dissertations

1986

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Low-Energy Collisions Of Alkali-Metal Anions, David M. Scott Jan 1986

Low-Energy Collisions Of Alkali-Metal Anions, David M. Scott

Dissertations, Theses, and Masters Projects

Measurements of the total cross section for electron detachment, (sigma)(,e)(E), are presented for low-energy (E(,1ab) < 300 eV) collisions of Na('-), K('-), and Cs('-) with atomic and molecular targets. For many of the atomic (rare-gas) targets, the energy dependence of (sigma)(,e)(E) is striking: virtually no detachment is observed until relatively high collision energies (50 eV in the center-of-mass frame) are reached, in contradistinction to what has been observed for similar collisions involving H('-). The thresholds for alkali anion detachment are approximately equal to the thresholds for excitation observed in collisions of neutral alkali atoms with these same targets. The similarity between the dynamics of the neutral system and that of the negative ion system, together with the observation (at greater energies) of detachment accompanied by excitation of the alkali parent, suggests that electron detachment may be mediated by a two-electron process in some cases. A simple curve-crossing mechanism adequately reproduces the observed (sigma)(,e)(E) for several of these rare-gas targets.;Measurements of both (sigma)(,e)(E) and the cross section for charge transfer (sigma)(,i)(E) have also been completed for H(,2), D(,2), N(,2), O(,2), CO, CO(,2), SO(,2), N(,2)O, CH(,4), and SF(,6) targets. Electron detachment is the dominant process for all of these targets except O(,2), SO(,2), and SF(,6), with thresholds on the order of a few eV. Structure in (sigma)(,e)(E) for the CO(,2) target has been attributed to charge transfer to a metastable state of CO(,2)('-)(('2)A(,1)). Similarly, in the case of N(,2)O, both (sigma)(,e)(E) and (sigma)(,i)(E) exhibit behavior which suggests that a temporary negative ion state is formed during the collision. In the case of the O(,2), SO(,2), and SF(,6) targets, charge transfer is observed to have particularly large cross sections (>100 (ANGSTROM)('2)) at low collision energies.


Rydberg Atoms In Parallel Electric And Magnetic Fields, Robert Leonard Waterland Jan 1986

Rydberg Atoms In Parallel Electric And Magnetic Fields, Robert Leonard Waterland

Dissertations, Theses, and Masters Projects

I have calculated the energy spectrum of a highly excited atom which lies in parallel, static electric and magnetic fields. In parallel fields the Coulomb quantum numbers n and m are still "good" quantum numbers but 1 is not: the calculation is for n = 30, m = 1 atoms.;The eigenvalues were obtained by semi-classical quantisation of first-order classical perturbation theory and have been calculated for a large range of electric and magnetic field strengths. The results are in good agreement with those found from first-order degenerate quantum perturbation theory.;The semi-classical analysis provides a correlation diagram connecting the Stark effect …