Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Quantum Control Via A Genetic Algorithm Of The Field Ionization Pathway Of A Rydberg Electron, Vincent C. Gregoric, Xinyue Kang, Zhimin Cheryl Liu, Zoe A. Rowley, Thomas J. Carroll, Michael W. Noel Aug 2017

Quantum Control Via A Genetic Algorithm Of The Field Ionization Pathway Of A Rydberg Electron, Vincent C. Gregoric, Xinyue Kang, Zhimin Cheryl Liu, Zoe A. Rowley, Thomas J. Carroll, Michael W. Noel

Physics and Astronomy Faculty Publications

Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n*)4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus …


Optimizing An Electron's Path To Ionization Using A Genetic Algorithm, Jason Bennett, Kevin Choice Jul 2017

Optimizing An Electron's Path To Ionization Using A Genetic Algorithm, Jason Bennett, Kevin Choice

Physics and Astronomy Summer Fellows

A Rydberg atom is an atom with a highly excited and weakly bound valence electron. A widespread method of studying quantum mechanics with Rydberg atoms is to ionize the electron and measure its arrival time. We use a Genetic Algorithm (GA) to control the electron's path to ionization. The Rydberg electron's energy levels are strongly shifted by the presence of an electric field. The energy levels shift and curve, but never cross. At an avoided crossing the electron can jump from one level to the next. By engineering the electric field's time dependence, we thereby control the path to ionization. …


Microwave Assisted Dipole-Dipole Transitions, Jacob T. Paul Apr 2017

Microwave Assisted Dipole-Dipole Transitions, Jacob T. Paul

Physics and Astronomy Honors Papers

We explore this two photon assisted transition through computational and numerical analysis of possible energy levels. We calculate the matrix elements of the energy transition in detail discussing constants and the quantum mechanical possibilities of energy exchanges in these systems.

The goal is to better understand the energy exchange, so that moving forward we can control it. This paper covers the theoretical ends to controlling the energy transition by the way of two photon assisted transitions. The energy transitions take place between a dipole-dipole interaction, and a microwave photon.