Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 38

Full-Text Articles in Physical Sciences and Mathematics

Improvement For Generating High-Order Harmonics And Attosecond Pulses With Ultrashort Laser Fields, Dian Peng Dec 2019

Improvement For Generating High-Order Harmonics And Attosecond Pulses With Ultrashort Laser Fields, Dian Peng

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Nonlinear processes of high-order harmonic generation (HHG) produced by ultrashort few-cycle laser pulses possess interesting features which HHG produced by long pulses of many cycles may not have. First, HHG spectra produced by ultrashort pulses are extremely sensitive to the driving pulse waveform, which can be controlled by laser parameters such as carrier-envelope phases (CEPs), time delays or frequency chirps. Second, HHG spectra produced by ultrashort pulses can exhibit broad uneven peaks which are different from usual odd-ordered harmonic peaks that long pulses produce.

Based on the high sensitivity on pulse waveform of HHG spectra produced by ultrashort pulses, we …


Obituary: Anthony Starace (1945-2019) Sep 2019

Obituary: Anthony Starace (1945-2019)

Anthony F. Starace Publications

Anthony Starace, George Holmes University Professor of physics, died Sept. 5 from complications related to pancreatitis. He was 74.

Starace was born July 24, 1945, in the Queens borough of New York City. He graduated from Stuyvesant High School and earned his bachelor’s degree from Columbia University in 1966 before moving west to the University of Chicago, where he earned his doctorate under adviser Ugo Fano in 1971. It was in Chicago that he met Katherine Fritz of Beatrice, Nebraska, his wife of 51 years.

Following a postdoctoral appointment at Imperial College London, Starace moved to Lincoln as an assistant …


Generation And Stability Of Structurally Imprinted Target Skyrmions In Magnetic Multilayers, Noah Kent, Robert Streubel, Charles Henri Lambert, Alejandro Ceballos, Soong Gun Je, Scott Dhuey, Mi Young Im, Felix Büttner, Frances Hellman, Sayeef Salahuddin, Peter Fischer Sep 2019

Generation And Stability Of Structurally Imprinted Target Skyrmions In Magnetic Multilayers, Noah Kent, Robert Streubel, Charles Henri Lambert, Alejandro Ceballos, Soong Gun Je, Scott Dhuey, Mi Young Im, Felix Büttner, Frances Hellman, Sayeef Salahuddin, Peter Fischer

Robert Streubel Papers

Target Skyrmions (TSks) are extended topological spin textures with a constant chirality where the rotation of the z component of the magnetization is larger than π. TSks have topological charge 1 or 0, if the z component of the magnetization Mz goes through a rotation of nπwhere n is an odd or even integer, respectively. TSks with a rotation of the z component of up to 4πhave been imaged via high spatial resolution element-specific X-ray imaging. The TSks were generated by weakly coupling 30 nm thin Permalloy (Ni80Fe20, PY) disks with a 1 μm diameter to asymmetric (Ir 1 nm/Co …


Femtosecond Gas-Phase Mega-Electron-Volt Ultrafast Electron Diffraction, Xiaozhe Shen, J. P.F. Nunes, J. Yang, R. K. Jobe, R. K. Li, Ming Fu Lin, B. Moore, M. Niebuhr, S. P. Weathersby, T. J.A. Wolf, C. Yoneda, Markus Guehr, Martin Centurion, X. J. Wang Sep 2019

Femtosecond Gas-Phase Mega-Electron-Volt Ultrafast Electron Diffraction, Xiaozhe Shen, J. P.F. Nunes, J. Yang, R. K. Jobe, R. K. Li, Ming Fu Lin, B. Moore, M. Niebuhr, S. P. Weathersby, T. J.A. Wolf, C. Yoneda, Markus Guehr, Martin Centurion, X. J. Wang

Martin Centurion Publications

The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal that has long been envisioned - making space- and-time resolved molecular movies of chemical reaction in the gas-phase. Recently, an ultrafast electron diffraction (UED) apparatus using mega-electron-volt (MeV) electrons was developed at the SLAC National Accelerator Laboratory for imaging ultrafast structural dynamics of molecules in the gas phase. The SLAC gas-phase MeV UED has achieved 65 fs root mean square temporal resolution, 0.63 …


Roadmap On Photonic, Electronic And Atomic Collision Physics: Ii. Electron And Antimatter Interactions, Stefan Schippers, Emma Sokell, Friedrich Aumayr, Hossein Sadeghpour, Kiyoshi Ueda, Igor Bray, Klaus Bartschat, Andrew Murray, Jonathan Tennyson, Alexander Dorn, Masakazu Yamazaki, Masahiko Takahashi, Nigel Mason, Oldřich Novotný, Andreas Wolf, Leon Sanche, Martin Centurion, Yasunori Yamazaki, Gaetana Laricchia, Clifford M. Surko, James Sullivan, Gleb Gribakin, Daniel Wolf Savin, Yuri Ralchenko, Ronnie Hoekstra, Gerry O'Sullivan Aug 2019

Roadmap On Photonic, Electronic And Atomic Collision Physics: Ii. Electron And Antimatter Interactions, Stefan Schippers, Emma Sokell, Friedrich Aumayr, Hossein Sadeghpour, Kiyoshi Ueda, Igor Bray, Klaus Bartschat, Andrew Murray, Jonathan Tennyson, Alexander Dorn, Masakazu Yamazaki, Masahiko Takahashi, Nigel Mason, Oldřich Novotný, Andreas Wolf, Leon Sanche, Martin Centurion, Yasunori Yamazaki, Gaetana Laricchia, Clifford M. Surko, James Sullivan, Gleb Gribakin, Daniel Wolf Savin, Yuri Ralchenko, Ronnie Hoekstra, Gerry O'Sullivan

Martin Centurion Publications

We publish three Roadmaps on photonic, electronic and atomic collision physics in order to celebrate the 60th anniversary of the ICPEAC conference. In Roadmap II we focus on electron and antimatter interactions. Modern theoretical and experimental approaches provide detailed insight into the many body quantum dynamics of leptonic collisions with targets of varying complexity ranging from neutral and charged atoms to large biomolecules and clusters. These developments have been driven by technological progress and by the needs of adjacent areas of science such as astrophysics, plasma physics and radiation biophysics. This Roadmap aims at looking back along the road, explaining …


Diffractive Imaging Of Dissociation And Ground-State Dynamics In A Complex Molecule, Kyle J. Wilkin, Robert M. Parrish, Jie Yang, Thomas J.A. Wolf, J. Pedro F. Nunes, Markus Guehr, Renkai Li, Xiaozhe Shen, Qiang Zheng, Xijie Wang, Todd J. Martinez, Martin Centurion Aug 2019

Diffractive Imaging Of Dissociation And Ground-State Dynamics In A Complex Molecule, Kyle J. Wilkin, Robert M. Parrish, Jie Yang, Thomas J.A. Wolf, J. Pedro F. Nunes, Markus Guehr, Renkai Li, Xiaozhe Shen, Qiang Zheng, Xijie Wang, Todd J. Martinez, Martin Centurion

Martin Centurion Publications

We have investigated the structural dynamics in photoexcited 1,2-diiodotetrafluoroethane molecules (C2F4I2) in the gas phase experimentally using ultrafast electron diffraction and theoretically using FOMO-CASCI excited-state dynamics simulations. The molecules are excited by an ultraviolet femtosecond laser pulse to a state characterized by a transition from the iodine 5p orbital to a mixed 5p||σ hole and CF2• antibonding orbital, which results in the cleavage of one of the carbon-iodine bonds. We have observed, with sub-Angstrom resolution, the motion of the nuclear wave packet of the dissociating iodine atom followed by …


Reconfigurable Ferromagnetic Liquid Droplets, Xubo Liu, Noah Kent, Alejandro Ceballos, Robert Streubel, Yufeng Jiang, Yu Chai, Paul Y. Kim, Joe Forth, Frances Hellman, Shaowei Shi, Dong Wang, Brett A. Helms, Paul D. Ashby, Peter Fischer, Thomas P. Russell Jul 2019

Reconfigurable Ferromagnetic Liquid Droplets, Xubo Liu, Noah Kent, Alejandro Ceballos, Robert Streubel, Yufeng Jiang, Yu Chai, Paul Y. Kim, Joe Forth, Frances Hellman, Shaowei Shi, Dong Wang, Brett A. Helms, Paul D. Ashby, Peter Fischer, Thomas P. Russell

Robert Streubel Papers

Solid ferromagnetic materials are rigid in shape and cannot be reconfigured. Ferrofluids, although reconfigurable, are paramagnetic at room temperature and lose their magnetization when the applied magnetic field is removed. Here, we show a reversible paramagnetic-to-ferromagnetic transformation of ferrofluid droplets by the jamming of a monolayer of magnetic nanoparticles assembled at the water-oil interface. These ferromagnetic liquid droplets exhibit a finite coercivity and remanent magnetization. They can be easily reconfigured into different shapes while preserving themagnetic properties of solid ferromagnets with classic north-south dipole interactions. Their translational and rotational motions can be actuated remotely and precisely by an external magnetic …


Performance Of Plastic Electron Optics Components Fabricated Using A 3d Printer, Phillip Wiebe, Peter Beierle, Hua-Chieh Shao, Bret Gergely, Anthony F. Starace, Herman Batelaan May 2019

Performance Of Plastic Electron Optics Components Fabricated Using A 3d Printer, Phillip Wiebe, Peter Beierle, Hua-Chieh Shao, Bret Gergely, Anthony F. Starace, Herman Batelaan

Anthony F. Starace Publications

We show images produced by an electron beam deflector, a quadrupole lens and a einzel lens fabricated from conducting and non-conducting plastic using a 3D printer. Despite the difficulties associated with the use of plastics in vacuum, such as outgassing, poor conductivity, and print defects, the devices were used successfully in vacuum to steer, stretch and focus electron beams to millimeter diameters. Simulations indicate that much smaller focus spot sizes might be possible for such 3D-printed plastic electron lenses taking into account some possible surface defects. This work was motivated by our need to place electron optical components in difficult-to-access …


New Heusler Compounds In Ni-Mn-In And Ni-Mn-Sn Alloys, Xingzhong Li, W.-Y. Zhang, Shah R. Valloppilly, David J. Sellmyer May 2019

New Heusler Compounds In Ni-Mn-In And Ni-Mn-Sn Alloys, Xingzhong Li, W.-Y. Zhang, Shah R. Valloppilly, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Rapidly quenched ternary Ni-Mn-T (T = In, Sn) alloys exhibit features associated with magnetic skyrmions, so that XRD, TEM, EDS, SAED and HREM investigations were carried out for structural characterization on the two alloy systems. In this paper, we report a new type of Mn-rich Heusler compound with a cubic unit cell, a = 0.9150 nm in Ni-Mn-In and a = 0.9051 nm in Ni-Mn-Sn, which coexist with a Ni-rich full-Heusler compound with defects, a = 0.6094 nm in Ni-Mn-In and a = 0.6034 nm in Ni-Mn-Sn. A further analysis of the experimental results reveals a close structural relationship between …


Analytic Generalized Description Of A Perturbative Nonparaxial Elegant Laguerre-Gaussian Phasor For Ultrashort Pulses In The Time Domain, Andrew Vikartofsky, Ethan C. Jahns, Anthony F. Starace May 2019

Analytic Generalized Description Of A Perturbative Nonparaxial Elegant Laguerre-Gaussian Phasor For Ultrashort Pulses In The Time Domain, Andrew Vikartofsky, Ethan C. Jahns, Anthony F. Starace

Anthony F. Starace Publications

An analytic expression for a polychromatic phasor representing an arbitrarily short elegant Laguerre-Gauss (eLG) laser pulse of any spot size and LG mode is presented in the time domain as a nonrecursive, closed-form perturbative expansion valid to any order of perturbative correction. This phasor enables the calculation of the complex electromagnetic fields for such beams without requiring the evaluation of any Fourier integrals. It is thus straightforward to implement in analytical or numerical applications involving eLG pulses.


Analytic Description Of High-Order Harmonic Generation In The Adiabatic Limit With Application To An Initial S State In An Intense Bicircular Laser Pulse, M. V. Frolov, N. L. Manakov, A. A. Minina, A. A. Silaev, N. V. Vvedenskii, M. Yu. Ivanov, Anthony F. Starace May 2019

Analytic Description Of High-Order Harmonic Generation In The Adiabatic Limit With Application To An Initial S State In An Intense Bicircular Laser Pulse, M. V. Frolov, N. L. Manakov, A. A. Minina, A. A. Silaev, N. V. Vvedenskii, M. Yu. Ivanov, Anthony F. Starace

Anthony F. Starace Publications

An analytic description of high-order harmonic generation (HHG) is proposed in the adiabatic (low-frequency) limit for an initial s state and a laser field having an arbitrary wave form. The approach is based on the two-state time-dependent effective range theory and is extended to the case of neutral atoms and positively charged ions by introducing ad hoc the Coulomb corrections for HHG. The resulting closed analytical form for the HHG amplitude is discussed in terms of real classical trajectories. The accuracy of the results of our analytic model is demonstrated by comparison with numerical solutions of the time-dependent Schrödinger equation …


Free Electron Sources And Diffraction In Time, Eric R. Jones May 2019

Free Electron Sources And Diffraction In Time, Eric R. Jones

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The quantum revolution of the last century advanced synergistically with technology, for example, with control of the temporal and spatial coherence, and the polarization state of light. Indeed, experimental confirmation of the quirks of quantum theory, as originally highlighted by Einstein, Podolsky, and Rosen, through Bohm, and then Bell, have been performed with photons, i.e., electromagnetic wave packets prepared in the same quantum states. Experimental tests of quantum mechanics with matter wave packets have been limited due to challenges in preparing all of the packets with similar quantum states. While great strides have been made for trapped atoms and Bose-Einstein …


Origin Of Enhanced Anisotropy In Fept-C Granular Films Revealed By Xmcd, Robert Streubel, Alpha T. N'Diaye, Kumar Srinivasan, Antony Ajan, Peter Fischer Apr 2019

Origin Of Enhanced Anisotropy In Fept-C Granular Films Revealed By Xmcd, Robert Streubel, Alpha T. N'Diaye, Kumar Srinivasan, Antony Ajan, Peter Fischer

Robert Streubel Papers

We study the effect of carbon segregants on the spin and orbital moments of L10 FePt granular media using x-ray magnetic circular dichroism (XMCD) spectroscopy and report an effective decoupling of the structural film properties from the magnetic parameters of the grains. The carbon concentration reduces the grain size from (200 ± 160) nm2 down to (50 ± 20) nm2 for 40 mol. %C and improves sphericity and the order of grains, while preserving the crystalline order, spin and orbital moments, and perpendicular magnetocrystalline anisotropy. We identify the primary cause of enhanced saturation and coercive fields as the reduced demagnetization …


Testing Quantum Coherence In Stochastic Electrodynamics With Squeezed Schrödinger Cat States, Wayne Cheng-Wei Huang, Herman Batelaan Apr 2019

Testing Quantum Coherence In Stochastic Electrodynamics With Squeezed Schrödinger Cat States, Wayne Cheng-Wei Huang, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

The interference pattern in electron double-slit diffraction is a hallmark of quantum mechanics. A long-standing question for stochastic electrodynamics (SED) is whether or not it is capable of reproducing such effects, as interference is a manifestation of quantum coherence. In this study, we used excited harmonic oscillators to directly test this quantum feature in SED. We used two counter-propagating dichromatic laser pulses to promote a ground-state harmonic oscillator to a squeezed Schrödinger cat state. Upon recombination of the two well-separated wavepackets, an interference pattern emerges in the quantum probability distribution but is absent in the SED probability distribution. We thus …


Perturbative Generalization Of Nonparaxial Ultrashort Tightly-Focused Elegant Laguerre-Gaussian Beams, Andrew M. Vikartofsky Apr 2019

Perturbative Generalization Of Nonparaxial Ultrashort Tightly-Focused Elegant Laguerre-Gaussian Beams, Andrew M. Vikartofsky

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

An analytical method for calculating the electromagnetic fields of a nonparaxial elegant Laguerre-Gaussian (eLG) vortex beam is presented for arbitrary pulse duration, spot size, and LG mode. This perturbative approach provides a numerically tractable model for the calculation of arbitrarily high radial and azimuthal LG modes in the nonparaxial regime, without requiring integral representations of the fields. A key feature of this perturbative model is its use of a Poisson-like frequency spectrum, which allows for the proper description of pulses of arbitrarily short duration. The time-domain representation of this model is presented as a non-recursive closed-form expression to any order …


Magnetization Reversal And Local Switching Fields Of Ferromagnetic Co/Pd Microtubes With Radial Magnetization, Norbert Puwenberg, Christopher F. Reiche, Robert Streubel, Mishal Khan, Dipankar Mukherjee, Ivan V. Soldatov, Michael Melzer, Oliver G. Schmidt, Bernd Büchner, Thomas Mühl Mar 2019

Magnetization Reversal And Local Switching Fields Of Ferromagnetic Co/Pd Microtubes With Radial Magnetization, Norbert Puwenberg, Christopher F. Reiche, Robert Streubel, Mishal Khan, Dipankar Mukherjee, Ivan V. Soldatov, Michael Melzer, Oliver G. Schmidt, Bernd Büchner, Thomas Mühl

Robert Streubel Papers

Three-dimensional nanomagnetism is a rapidly growing field of research covering both noncollinear spin textures and curved magnetic geometries including microtubular structures. We spatially resolve the field-induced magnetization reversal of free-standing ferromagnetic microtubes utilizing multifrequency magnetic force microscopy (MFM). The microtubes are composed of Co/Pd multilayer films with perpendicular magnetic anisotropy that translates to an anisotropy with radial easy axis upon rolling-up. Simultaneously mapping the topography and the perpendicular magnetostatic force derivative, the relation between surface angle and local magnetization configuration is evaluated for a large number of locations with slopes exceeding 45 degrees. The angle-dependence of the switching field is …


Violation Of Centrosymmetry In Time-Resolved Coherent X-Ray Diffraction From Rovibrational States Of Diatomic Molecules, Hua-Chieh Shao, Anthony F. Starace Mar 2019

Violation Of Centrosymmetry In Time-Resolved Coherent X-Ray Diffraction From Rovibrational States Of Diatomic Molecules, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

Owing to increasing applications of time-resolved coherent x-ray scattering for the investigation of molecular reaction dynamics, we develop a theoretical model for time-dependent x-ray diffraction from molecular and/or electronic motion in molecules. Our model shows that the violation of centrosymmetry (VOC) is a general phenomenon in time-resolved diffraction patterns. We employ our theoretical model to illustrate the VOC in time-resolved coherent x-ray diffraction from two oriented diatomic molecules undergoing rovibrational motion: lithium hydride (LiD) and hydrogen (HD). Our simulations show asymmetric x-ray diffraction images that reflect the directions of the molecular motions.


X-Ray Ptychography On Low-Dimensional Hard-Condensed Matter Materials, Xiaowen Shi, Nicolas Burdet, Bo Chen, Gang Xiong, Robert Streubel, Ross Harder, Ian K. Robinson Mar 2019

X-Ray Ptychography On Low-Dimensional Hard-Condensed Matter Materials, Xiaowen Shi, Nicolas Burdet, Bo Chen, Gang Xiong, Robert Streubel, Ross Harder, Ian K. Robinson

Robert Streubel Papers

Tailoring structural, chemical, and electronic (dis-)order in heterogeneous media is one of the transformative opportunities to enable new functionalities and sciences in energy and quantum materials. This endeavor requires elemental, chemical, and magnetic sensitivities at the nano/atomic scale in two- and three-dimensional space. Soft X-ray radiation and hard X-ray radiation provided by synchrotron facilities have emerged as standard characterization probes owing to their inherent element-specificity and high intensity. One of the most promising methods in view of sensitivity and spatial resolution is coherent diffraction imaging, namely, X-ray ptychography, which is envisioned to take on the dominance of electron imaging techniques …


Femtosecond-Laser-Induced Spin-Polarized Electron Emission From A Gaas Tip, Evan M. Brunkow, Eric R. Jones, Herman Batelaan, Timothy J. Gay Feb 2019

Femtosecond-Laser-Induced Spin-Polarized Electron Emission From A Gaas Tip, Evan M. Brunkow, Eric R. Jones, Herman Batelaan, Timothy J. Gay

Timothy J. Gay Publications

It is shown that focusing circularly polarized 800nm light pulses of duration 100 fs on the tips of p-GaAs crystalline shards having no negative electron affinity (NEA) activation results in electron emission that is both fast and spin-polarized. The 400 fs duration of the emission process was determined by pump/probe measurements. The three samples we investigated produced electron polarizations of 13.1(0.9)%, 13.3(0.7)%, and 10.4(0.2)%. Emission currents ranged between 50 pA and 3 nA with a sample bias of –100 V and an average laser power of 100 mW. The electron emission exhibited linear dichroism and was obtained under moderate vacuum …


Textured Heterogeneity In Square Artificial Spin Ice, J. C.T. Lee, S. K. Mishra, V. S. Bhat, R. Streubel, B. Farmer, X. Shi, L. E. De Long, I. Mcnulty, P. Fischer, S. D. Kevan, S. Roy Jan 2019

Textured Heterogeneity In Square Artificial Spin Ice, J. C.T. Lee, S. K. Mishra, V. S. Bhat, R. Streubel, B. Farmer, X. Shi, L. E. De Long, I. Mcnulty, P. Fischer, S. D. Kevan, S. Roy

Robert Streubel Papers

We report evidence of spontaneous formation of a heterogeneous network of superdomains in two-dimensional square artificial spin ice nanostructures in externally applied magnetic fields. Coherent resonant soft-x-ray scattering from such textures gives rise to unique internal structure in Bragg peaks. The magnetic heterogeneity is locally disordered but has a zigzag texture at longer length scales. Our result suggests that the macroscopic magnetic texture is derived from the microscopic structure of the Dirac strings.


High Energy Product Of Mnbi By Field Annealing And Sn Alloying, Wenyong Zhang, Balamurugan Balasubramanian, Parashu Kharel, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, David J. Sellmyer Jan 2019

High Energy Product Of Mnbi By Field Annealing And Sn Alloying, Wenyong Zhang, Balamurugan Balasubramanian, Parashu Kharel, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Permanent-magnet materials are one cornerstone of today’s technology, abundant in disk drives, motors, medical equipment, wind gen- erators, and cars. A continuing challenge has been to reconcile high permanent-magnet performance with low raw-material costs. This work reports a Mn-Bi-Sn alloy exclusively made from inexpensive elements, exhibiting high values of Curie-temperature, magnetization, anisotropy, coercivity, and energy product. The samples are produced by field annealing of rapidly quenched Sn-containing MnBi alloys, where the improvement of the magnetic properties is caused by the substitutional occupancy of the 2c sites in the hexagonal NiAs structure by Sn. The substitution modifies the electronic structure of …


High Energy Product Of Mnbi By Field Annealing And Sn Alloying, Wenyong Zhang, Balamurugan Balasubramanian, Parashu Kharel, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, David J. Sellmyer Jan 2019

High Energy Product Of Mnbi By Field Annealing And Sn Alloying, Wenyong Zhang, Balamurugan Balasubramanian, Parashu Kharel, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Permanent-magnet materials are one cornerstone of today’s technology, abundant in disk drives, motors, medical equipment, wind generators, and cars. A continuing challenge has been to reconcile high permanent-magnet performance with low raw-material costs. This work reports a Mn-Bi-Sn alloy exclusively made from inexpensive elements, exhibiting high values of Curie-temperature, magnetization, anisotropy, coercivity, and energy product. The samples are produced by field annealing of rapidly quenched Sn-containing MnBi alloys, where the improvement of the magnetic properties is caused by the substitutional occupancy of the 2c sites in the hexagonal NiAs structure by Sn. The substitution modifies the electronic structure of the …


Boundary Conditions And Berry Phase In Magnetic Nanostructures, A. Ullah, B. Balamurugan, W. Zhang, D. J. Sellmyer, R. Skomski Jan 2019

Boundary Conditions And Berry Phase In Magnetic Nanostructures, A. Ullah, B. Balamurugan, W. Zhang, D. J. Sellmyer, R. Skomski

Nebraska Center for Materials and Nanoscience: Faculty Publications

The effect of micromagnetic boundary conditions on the Berry curvature and topological Hall effect in granular nanostructures is investi- gated by model calculations. Both free surfaces and grain boundaries between interacting particles or grains affect the spin structure. The Dzyaloshinskii-Moriya interactions yield corrections to the Erdmann-Weierstrass boundary conditions, but the Berry curvature remains an exclusive functional of the local spin structure, which greatly simplifies the treatment of nanostructures. An explicit example is a model nanostructure with cylindrical symmetry whose spin structure is described by Bessel function and which yields a mean-field-type Hall-effect contribution that can be related to magnetic-force-microscopy images.


Radiation Tolerance In Nano-Structured Crystalline Fe(Cr)/Amorphous Sioc Composite, Qing Su, Tianyao Wang, Lin Shao, Michael Nastasi Jan 2019

Radiation Tolerance In Nano-Structured Crystalline Fe(Cr)/Amorphous Sioc Composite, Qing Su, Tianyao Wang, Lin Shao, Michael Nastasi

Nebraska Center for Materials and Nanoscience: Faculty Publications

The management of irradiation defects is one of key challenges for structural materials in current and future reactor systems. To develop radiation tolerant alloys for service in extreme irradiation environments, the Fe self-ion radiation response of nanocomposites composed of amorphous silicon oxycarbide (SiOC) and crystalline Fe(Cr) were examined at 10, 20, and 50 displacements per atom damage levels. Grain growth in width direction was observed to increase with increasing irradiation dose in both Fe(Cr) films and Fe(Cr) layers in the nanocomposite after irradiation at room temperature. However, compared to the Fe(Cr) film, the Fe(Cr) layers in the nanocomposite exhibited ~50% …


Magnetic And Magnetocaloric Properties Of Pr2-Xndxfe17 Ribbons, Bishnu Dahal, Parashu Kharel, Thomas Ott, Wenyong Zhang, Shah R. Valloppilly, Ralph Skomski, David J. Sellmyer Jan 2019

Magnetic And Magnetocaloric Properties Of Pr2-Xndxfe17 Ribbons, Bishnu Dahal, Parashu Kharel, Thomas Ott, Wenyong Zhang, Shah R. Valloppilly, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The structural, magnetic and magnetocaloric properties of Fe deficient Pr2-xNdxFe17 (x = 0.5, 0.7) alloys prepared by arc-melting and melt- spinning have been investigated. The room temperature x-ray diffraction patterns show that the samples are nearly single-phase and crystallize in the rhombohedral Th2Zn17-type crystal structure. The Curie temperatures determined from the thermomagnetic curves are 302 K and 307 K for Pr1.5Nd0.5Fe17 and Pr1.3Nd0.7Fe17, respectively. The peak magnetic entropy change and the relative cooling power at field change of 50 kOe …


Controlling The Magnetocrystalline Anisotropy Of E-Fe2o3, Imran Ahamed, Ralph Skomski, Arti Kashyap Jan 2019

Controlling The Magnetocrystalline Anisotropy Of E-Fe2o3, Imran Ahamed, Ralph Skomski, Arti Kashyap

Nebraska Center for Materials and Nanoscience: Faculty Publications

The magnetocrystalline anisotropy of pristine and Co-substituted ε-Fe2O3 is investigated by density functional calculations. The epsilon-iron oxide is the only polymorph of Fe2O3 magnetoelectric in its antiferromagnetic ground states other crystalline forms being α-Fe2O3 (hematite), β-Fe2O3, and γ-Fe2O3 (maghemite). The magnetizations of the four iron sublattices are antiferromagnetically aligned with slightly different magnetic moments resulting in a ferrimagnetic structure. Compared to the naturally occurring hematite and maghemite, bulk ε-Fe2O3 is difficult to prepare, but ε-Fe2O3 nanomaterials of different …


Quantum Phase Transition And Ferromagnetism In Co1+XSn, Rabindra Pahari, Balamurugan Balasubramanian, Rohit Pathak, Manh Coung Nguyen, Shah R. Valloppilly, Ralph Skomski, Arti Kashyap, Cai-Zhuang Wang, Kai-Ming Ho, George C. Hadjipanayis, David J. Sellmyer Jan 2019

Quantum Phase Transition And Ferromagnetism In Co1+XSn, Rabindra Pahari, Balamurugan Balasubramanian, Rohit Pathak, Manh Coung Nguyen, Shah R. Valloppilly, Ralph Skomski, Arti Kashyap, Cai-Zhuang Wang, Kai-Ming Ho, George C. Hadjipanayis, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The onset of ferromagnetism in cobalt-tin alloys is investigated experimentally and theoretically. The Co1+xSn alloys were prepared by rapid quenching from the melt and form a modified hexagonal NiAs-type crystal structure for 0.45 ≤ x ≤ 1. The magnetic behavior is described analytically and by density-functional theory using supercells and the coherent-potential approximation. The excess of Co concentration x, which enters the interstitial 2d sites in the hypothetical NiAs-ordered parent alloy CoSn, yields a Griffiths-like phase and, above a quantum critical point (xc ≈ 0.65), a quantum phase …


Crystal Structure And Dzyaloshinski–Moriya Micromagnetics, Ahsan Ullah, B. Balamurugan, Wuzhang Fang, Shah R. Valloppilly, Xingzhong Li, Rabindra Pahari, Lanping Yue, Andrei Sokolov, David J. Sellmyer, Ralph Skomski Jan 2019

Crystal Structure And Dzyaloshinski–Moriya Micromagnetics, Ahsan Ullah, B. Balamurugan, Wuzhang Fang, Shah R. Valloppilly, Xingzhong Li, Rabindra Pahari, Lanping Yue, Andrei Sokolov, David J. Sellmyer, Ralph Skomski

Nebraska Center for Materials and Nanoscience: Faculty Publications

The relationship between atomic-scale and micromagnetic Dzyaloshinski–Moriya (DM) interactions has been investigated. By analyzing the Lifshitz invariants for different point groups, we have found that there is no unique link between the absence of inversion symmetry and DM interactions. The absence of inversion symmetry is a necessary condition for a net DM interaction in crystals, but several noncentrosymmetric point groups have zero DM interactions. In many cases, the key consideration is whether the crystals are polar and/or chiral. For example, MnSi-type spin spirals, which violate helical spin symmetry, are caused by the insertion of chiral atomic-scale building blocks into an …


Comparative Study Of Topological Hall Effect And Skyrmions In Nimnin And Nimnga, Wenyong Zhang, Balamurugan Balasubramanian, Ahsan Ullah, Rabindra Pahari, Xingzhong Li, Lanping Yue, Shah R. Valloppilly, Andrei Sokolov, Ralph Skomski, David J. Sellmyer Jan 2019

Comparative Study Of Topological Hall Effect And Skyrmions In Nimnin And Nimnga, Wenyong Zhang, Balamurugan Balasubramanian, Ahsan Ullah, Rabindra Pahari, Xingzhong Li, Lanping Yue, Shah R. Valloppilly, Andrei Sokolov, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

A nonequilibrium rapid-quenching method has been used to fabricate NiMnIn and NiMnGa alloys that are chemically and morphologically similar but crystallographically and physically very different. NiMnGa crystallizes in a Ni2In-type hexagonal structure, whereas NiMnIn is a cubic Heusler alloy. Both alloys yield a topological Hall effect contribution corresponding to bubble-type skyrmion spin structures, but it occurs in much lower magnetic fields in NiMnIn as compared to NiMnGa. The effect is unrelated to net Dzyaloshinskii-Moriya interactions, which are absent in both alloys due to their inversion-symmetric crystal structures. Based on magnetic-force microscopy, we explain the difference between the two alloys by …


Structure And Magnetism Of Co2ge Nanoparticles, Onur Tosun, Frank M. Abel, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis Jan 2019

Structure And Magnetism Of Co2ge Nanoparticles, Onur Tosun, Frank M. Abel, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis

Nebraska Center for Materials and Nanoscience: Faculty Publications

The structural and magnetic properties of Co2Ge nanoparticles (NPs) prepared by the cluster-beam deposition (CBD) technique have been investigated. As-made particles with an average size of 5.5 nm exhibit a mixture of hexagonal and orthorhombic crystal structures. Thermomagnetic measurements showed that the as-made particles are superparamagnetic at room temperature with a blocking temperature (TB) of 20 K. When the particles are annealed at 823 K for 12 h, their size is increased to 13 nm and they develop a new orthorhombic crystal structure, with a Curie temperature (TC) of 815 K. This …