Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Symmetry-Based Techniques For Qualitative Understanding Of Rovibrational Effects In Spherical-Top Molecular Spectra And Dynamics, Justin Chadwick Mitchell May 2011

Symmetry-Based Techniques For Qualitative Understanding Of Rovibrational Effects In Spherical-Top Molecular Spectra And Dynamics, Justin Chadwick Mitchell

Graduate Theses and Dissertations

Using light to probe the structure of matter is as natural as opening our eyes. Modern physics and chemistry have turned this art into a rich science, measuring the delicate interactions possible at the molecular level.

Perhaps the most commonly used tool in computational spectroscopy is that of matrix diagonalization. While this is invaluable for calculating everything from molecular structure and energy levels to dipole moments and dynamics, the process of numerical diagonalization is an opaque one. This work applies symmetry and semi-classical techniques to elucidate numerical spectral analysis for high-symmetry molecules.

Semi-classical techniques, such as the Potential Energy Surfaces, …


Effects Of Annealing On The Electronic Transitions Of Zns Thin Films, S. S. Chiad, W. A. Jabbar, N. F. Habubi Jan 2011

Effects Of Annealing On The Electronic Transitions Of Zns Thin Films, S. S. Chiad, W. A. Jabbar, N. F. Habubi

Journal of the Arkansas Academy of Science

Thin films of zinc sulphide were prepared using a flash evaporation technique. The obtained thin films were subjected to heat treatment to investigate the effect of annealing on the transmittance spectrum and the electronic transitions. It has been found that annealing affected the transmission spectrum and caused an increase in the direct optical band gap. The optical parameters, oscillator energy E0 and dispersion energy Ed were determined using the Wemple DiDomenico single oscillator model. The optical energy gap obtained from the Wemple and DiDomenico model was in good agreement with the optical energy gap proposed by the Tauc theory.