Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Equilibrium And Quench-Dynamical Studies Of Ultracold Fermions In Ring-Shaped Optical Traps, Daniel Gordon Allman Nov 2023

Equilibrium And Quench-Dynamical Studies Of Ultracold Fermions In Ring-Shaped Optical Traps, Daniel Gordon Allman

Dartmouth College Ph.D Dissertations

The unique capability to precisely tune the few and many-body configurations of
ultracold Fermi gases provides a multi-dimensional platform for studying novel, ex-
otic aspects of quantum systems. These aspects include superfluid/superconducting
phenomena supported by potentially exotic pairing mechanisms, non-equilibrium and
critical dynamics, and proposed quantum sensing or computing applications based on
atomtronics.
Ring geometries provide natural arenas for probing transport properties of super-
fluids. Metastable states of quantized superfluid flow —persistent currents— exhibit
remarkable properties, and the manner in which they form is an incredibly rich sub-
ject. Studies of quenched superfluids demonstrate that persistent currents can form
from …


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn May 2023

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …


Aspects On The Quantum Dynamics Of A System Coupled To A Bosonic Environment, Qidong Xu Jan 2022

Aspects On The Quantum Dynamics Of A System Coupled To A Bosonic Environment, Qidong Xu

Dartmouth College Ph.D Dissertations

In this work we study various aspects of the quantum dynamics for a system coupled to a Bosonic environment, which is described by a collection of quantum harmonic oscillators or a quantum field. We first consider two quantum mechanical oscillator system-bath models obtained by dimensionally truncating linearized gravity coupled to a massive scalar field and scalar QED, and we show that they separately map onto the phase damped oscillator model and the oscillator system subject to two-photon damping. The phase damped oscillator model also corresponds to the optomechanical system with an acoustic field environment, and we study the acoustic environment …