Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atmospheric Sciences

Selected Works

Airglow

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Numerical And Statistical Evidence For Long-Range Ducted Gravity Wave Propagation Over Halley, Antarctica, J. B. Snively, K. Nielsen, M. P. Hickey, C. J. Heale, M. J. Taylor, T. Moffat-Griffin Sep 2015

Numerical And Statistical Evidence For Long-Range Ducted Gravity Wave Propagation Over Halley, Antarctica, J. B. Snively, K. Nielsen, M. P. Hickey, C. J. Heale, M. J. Taylor, T. Moffat-Griffin

Michael P. Hickey

Abundant short-period, small-scale gravity waves have been identified in the mesosphere and lower thermosphere over Halley, Antarctica, via ground-based airglow image data. Although many are observed as freely propagating at the heights of the airglow layers, new results under modeled conditions reveal that a significant fraction of these waves may be subject to reflections at altitudes above and below.The waves may at times be trapped within broad thermal ducts, spanning from the tropopause or stratopause to the base of the thermosphere (~140 km), which may facilitate long-range propagation (~1000s of km) under favorable wind conditions.


Atmospheric Airglow Fluctuations Due To A Tsunami‐Driven Gravity Wave Disturbance, Michael P. Hickey Ph.D., G. Schubert, R. L. Walterscheid Sep 2015

Atmospheric Airglow Fluctuations Due To A Tsunami‐Driven Gravity Wave Disturbance, Michael P. Hickey Ph.D., G. Schubert, R. L. Walterscheid

Michael P. Hickey

A spectral full‐wave model is used to study the upward propagation of a gravity wave disturbance and its effect on atmospheric nightglow emissions. Gravity waves are generated by a surface displacement that mimics a tsunami having a maximum amplitude of 0.5 m, a characteristic horizontal wavelength of 400 km, and a horizontal phase speed of 200 m/s. The gravity wave disturbance can reach F region altitudes before significant viscous dissipation occurs. The response of the OH Meinel nightglow in the mesopause region (∼87 km altitude) produces relative brightness fluctuations, which are ∼1% of the mean for overhead viewing. The wave …


A Simulation Study Of Space-Based Observations Of Gravity Waves In The Airglow Using Observed Aloha-93 Wave Parameters, Michael P. Hickey Ph.D., J. S. Brown Sep 2015

A Simulation Study Of Space-Based Observations Of Gravity Waves In The Airglow Using Observed Aloha-93 Wave Parameters, Michael P. Hickey Ph.D., J. S. Brown

Michael P. Hickey

We use gravity wave parameters derived from the ALOHA-93 campaign to model four gravity waves in airglow emissions as observed from the ground to numerically predict whether these waves could have been observed from space. In spite of encountering critical levels, some waves may still be observed in the airglow provided the critical level lies within the airglow emission region. One of the four waves experiences a critical level in the lower region of an airglow layer such that the disturbance to the volume emission rate would be effectively limited to a short distance along a satellite line of sight. …


First Year Investigation Of Gravity Waves And Temperature Variability Over The Andes., Jonathan Pugmire, Neal Criddle, Michael Taylor, Dominique Pautet, Yucheng Zhao Sep 2010

First Year Investigation Of Gravity Waves And Temperature Variability Over The Andes., Jonathan Pugmire, Neal Criddle, Michael Taylor, Dominique Pautet, Yucheng Zhao

Jonathan Pugmire

The Andes region is an excellent natural laboratory for investigating gravity wave influences on the Upper Mesospheric and Lower Thermospheric (MLT) dynamics: during the summer months the dominant gravity waves result from deep convection arising from severe thunderstorms over the continent to the east. In winter this convective activity is expected to be replaced by strong orographic forcing due to intense prevailing zonal winds blowing eastward from the Pacific Ocean and suddenly encountering the towering Andes mountain range (6000m). This creates large amplitude mountain waves that have been measured well into the stratosphere and most recently penetrate occasionally into the …


The First Ten Months Of Investigation Of Gravity Waves And Temperature Variability Over The Andes., Jonathan R. Pugmire, Neal Criddle, Michael J. Taylor, Dominique Pautet, Yucheng Zhao May 2010

The First Ten Months Of Investigation Of Gravity Waves And Temperature Variability Over The Andes., Jonathan R. Pugmire, Neal Criddle, Michael J. Taylor, Dominique Pautet, Yucheng Zhao

Jonathan Pugmire

The Andes region is an excellent natural laboratory for investigating gravity wave influences on the Upper Mesospheric and Lower Thermospheric (MLT) dynamics: during the summer months the dominant gravity waves result from deep convection arising from severe thunderstorms over the continent to the east. In winter this convective activity is expected to be replaced by strong orographic forcing due to intense prevailing zonal winds blowing eastward from the Pacific Ocean and suddenly encountering the towering Andes mountain range (6000m). This creates large amplitude mountain waves that have been measured well into the stratosphere and most recently penetration occasionally into the …


Intra-Annual Comparison Of Mesospheric Gravity Waves Over Halley And Rothera Stations, Antarctica., Jonathan R. Pugmire, Mike J. Taylor, Kim Nielsen May 2009

Intra-Annual Comparison Of Mesospheric Gravity Waves Over Halley And Rothera Stations, Antarctica., Jonathan R. Pugmire, Mike J. Taylor, Kim Nielsen

Jonathan Pugmire

As part of a collaborative program between British Antarctic Survey and Utah State University, we present an intra-annual study of short-period, mesospheric gravity wave events observed over Antarctica in the near infrared OH emission. The measurements were made using an all-sky airglow imager operated at either Halley Station on the Brunt Ice Shelf, or Rothera Station, situated on the Antarctic Peninsula. A total of six austral winter seasons have been analyzed (2000-2006). This study comprises the first detailed winter seasonal investigation of short-period mesospheric gravity waves at high-Antarctic latitudes. Distributions of their observed wave parameters were found to be similar …