Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atmospheric Sciences

Air Force Institute of Technology

High power lasers

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: Ii. Using Time-Dependent Simulations, Mark F. Spencer Jul 2020

Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: Ii. Using Time-Dependent Simulations, Mark F. Spencer

Faculty Publications

Part II of this two-part paper uses wave-optics simulations to look at the Monte Carlo averages associated with turbulence and time-dependent thermal blooming (TDTB). The goal is to investigate turbulence thermal blooming interaction (TTBI). At wavelengths near 1 μm, TTBI increases the amount of constructive and destructive interference (i.e., scintillation) that results from high-power laser beam propagation through distributed-volume atmospheric aberrations. As a result, we use the spherical-wave Rytov number, the number of wind-clearing periods, and the distortion number to gauge the strength of the simulated turbulence and TDTB. These parameters simply greatly given propagation paths with constant atmospheric conditions. …


Experimental Validation Techniques For The Heleeos Off-Axis Laser Propagation Model, John D. Haiducek Mar 2010

Experimental Validation Techniques For The Heleeos Off-Axis Laser Propagation Model, John D. Haiducek

Theses and Dissertations

The High Energy Laser End-to-End Operational Simulation (HELEEOS) off-axis scattering algorithm is designed to predict the irradiance that will be detected at a given off-axis location due to atmospheric scattering of a high-energy laser. The HELEEOS system models the propagation of the laser through the atmosphere, accounting for such effects as turbulence, thermal blooming, and atmospheric absorption. The HELEEOS off-axis scattering algorithm uses the scattering phase functions of the Mie scattering models to predict the amount of radiation that will be scattered toward a particular observation location from each point along the beam path, and the total irradiance that will …


Assessment Of Weather Sensitivities And Air Force Weather (Afw) Support To Tactical Lasers In The Lower Troposphere, Francesco J. Echeverria Mar 2009

Assessment Of Weather Sensitivities And Air Force Weather (Afw) Support To Tactical Lasers In The Lower Troposphere, Francesco J. Echeverria

Theses and Dissertations

ATL scientists need to develop a full understanding of the interaction effects between a high-energy laser beam and the atmosphere through which it propagates. Achieving this understanding is important for many reasons. In particular, the high cost of DE weapons systems makes each propagation event expensive. Having an understanding of the atmosphere in which a high-energy laser propagates will increase efficiency and effectiveness of the ATL weapon system, which in turn will decrease cost of operation. A tool that allows for the ATL war-fighter to determine the atmospheric effects on laser propagation currently does not exist. This study creates a …