Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atmospheric Sciences

PDF

Utah State University

Rayleigh-scatter lidar

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Connection Between The Midlatitude Mesosphere And Sudden Stratospheric Warmings As Measured By Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron May 2016

Connection Between The Midlatitude Mesosphere And Sudden Stratospheric Warmings As Measured By Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Faculty publications

While the mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions, observations of these anomalies at midlatitudes are much more sparse. The Rayleigh-scatter lidar system, which operated at the Center for Atmospheric and Space Sciences on the campus of Utah State University (41.7°N, 111.8°W), collected a very dense set of observations, from 1993 to 2004, over a 45–90 km altitude range. This paper focuses on Rayleigh lidar temperatures derived during the six major SSW events that occurred during the 11 year period when the lidar was operating and aims to characterize the …


Seasonal Variations Of Relative Neutral Densities Between 45 And 90 Km Determined From Usu Rayleigh Lidar Observations, David Barton, Vincent B. Wickwar, Leda Sox, Joshua P. Herron Jun 2014

Seasonal Variations Of Relative Neutral Densities Between 45 And 90 Km Determined From Usu Rayleigh Lidar Observations, David Barton, Vincent B. Wickwar, Leda Sox, Joshua P. Herron

Posters

A Rayleigh-scatter lidar operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W), part of Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), collected extensive data between 1993 and 2004. From the Rayleigh lidar photon-count profiles, relative densities were determined throughout the mesosphere, from 45 to 90 km. Using these relative densities three climatologies were derived, each using a different density normalization at 45 km. The first normalized the relative densities to a constant; the second to the NRL-MSISe00 empirical model which has a strong annual component; and the third to the CPC analyses …


Mid-Latiude Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick Dec 2013

Mid-Latiude Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick

Posters

Rayleigh lidar opened a portion of the atmosphere, from 30 to 90 km, to ground-based observations. Rayleigh-scatter observations were made at the Atmospheric Lidar Observatory (ALO) at Utah State University (USU) from 1993–2004 between 45 and 90 km. The lidar consisted of a 0.44-m diameter mirror, a frequency-doubled Nd:YAG laser opera'ng at 532-nm at 30- Hz at either 18- or 24-W, giving power- aperture products (PAPs) of 2.7- or 3.6- Wm2, respec'vely, and one detector channel. An example of what was accomplished with this system is shown as part of Fig. 1. The temperature climatology was based on ~5000 hours …


Midlatitude, Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick Aug 2013

Midlatitude, Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick

Presentations

No abstract provided.