Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Magnetic Properties Of Lsmo/Sto Thin Films: Magnetocaloric, Spin Dynamics And Magnetic Viscosity Investigations, Navid Mottaghi Jan 2021

Magnetic Properties Of Lsmo/Sto Thin Films: Magnetocaloric, Spin Dynamics And Magnetic Viscosity Investigations, Navid Mottaghi

Graduate Theses, Dissertations, and Problem Reports

While other films are discussed, this dissertation will focus on detailed studies of the dc and ac bulk magnetometry in a characteristic 7.6 nm thin film of La0.7Sr0.3MnO3 grown on SrTiO3 (001). The dc bulk magnetometry measurements show that the sample is magnetically inhomogeneous. Temperature variation of magnetization (M vs. T) was measured in zero-field-cooled and field-cooled protocols to determine the blocking temperature TB in different applied magnetic fields. The field variation of TB is interpreted as the presence of embedded spin clusters of 1.4 nm. Moreover, the M vs. …


Preventing Oxidation Of Aluminum Films With Cadmium Of Zinc Barriers, Spencer B. Perry Aug 2016

Preventing Oxidation Of Aluminum Films With Cadmium Of Zinc Barriers, Spencer B. Perry

Student Works

The planned Large UV/Optical/Near-infrared Telescope (LUVOIR) is expected to launch sometime in the 2030s if NASA surveys recommend LUVOIR over several other projects in early developmental stages [1]. As the project title suggests, the proposed telescope would include large mirrors (between 8 and 16 meters) as part of the orbiting reflector telescope. My research focused on the preparation of aluminum mirrors with zinc or cadmium barrier layers that were designed to prevent oxidation of the aluminum.


Thin Films Of Carbon Nanotubes And Nanotube/Polymer Composites, Anthony D. Willey Dec 2012

Thin Films Of Carbon Nanotubes And Nanotube/Polymer Composites, Anthony D. Willey

Theses and Dissertations

A method is described for ultrasonically spraying thin films of carbon nanotubes that have been suspended in organic solvents. Nanotubes were sonicated in N-Methyl-2-pyrrolidone or N-Cyclohexyl-2-pyrrolidone and then sprayed onto a heated substrate using an ultrasonic spray nozzle. The solvent quickly evaporated, leaving a thin film of randomly oriented nanotubes. Film thickness was controlled by the spray time and ranged between 200-500 nm, with RMS roughness of about 40 nm. Also described is a method for creating thin (300 nm) conductive freestanding nanotube/polymer composite films by infiltrating sprayed nanotube films with polyimide.


Electron Microscopy Characterization Of Vanadium Dioxide Thin Films And Nanoparticles, Felipe Rivera Mar 2012

Electron Microscopy Characterization Of Vanadium Dioxide Thin Films And Nanoparticles, Felipe Rivera

Theses and Dissertations

Vanadium dioxide (VO_2) is a material of particular interest due to its exhibited metal to insulator phase transition at 68°C that is accompanied by an abrupt and significant change in its electronic and optical properties. Since this material can exhibit a reversible drop in resistivity of up to five orders of magnitude and a reversible drop in infrared optical transmission of up to 80%, this material holds promise in several technological applications. Solid phase crystallization of VO_2 thin films was obtained by a post-deposition annealing process of a VO_{x,x approx 2} amorphous film sputtered on an amorphous silicon dioxide (SiO_2) …


Section Abstracts: Astronomy, Mathematics And Physics With Materials Science Apr 2011

Section Abstracts: Astronomy, Mathematics And Physics With Materials Science

Virginia Journal of Science

Abstracts for the Astronomy, Mathematics, and Physics with Materials Science Section for the 89th Annual Meeting of the Virginia Academy of Science, May 25-27, 2011, University of Richmond, Richmond VA.


Scandium Oxide Thin Films And Their Optical Properties In The Extreme Ultraviolet, Guillermo Antonio Acosta Nov 2007

Scandium Oxide Thin Films And Their Optical Properties In The Extreme Ultraviolet, Guillermo Antonio Acosta

Theses and Dissertations

This study reports on the physical and optical characterization of scandium oxide thin films. Thin films of scandium oxide, 20-40 nm thick, were deposited on silicon wafers, quartz slides, and silicon photodiodes by reactively sputtering scandium in an oxygen environment. These samples were characterized using ellipsometry, high-resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis. A 28.46 nm thick scandium oxide thin film was measured in the Extreme Ultraviolet (EUV) from 2.7 to 50 nm (459.3 to 24.8 eV) using synchrotron radiation at the Advanced Light Source Beamline 6.3.2 at the Lawrence Berkeley National Laboratory. In …


Thorium-Based Thin Films As Highly Reflective Mirrors In The Euv, David D. Allred, William R. Evans, Jed E. Johnson, Richard L. Sandberg, R. Steven Turley Jan 2005

Thorium-Based Thin Films As Highly Reflective Mirrors In The Euv, David D. Allred, William R. Evans, Jed E. Johnson, Richard L. Sandberg, R. Steven Turley

Faculty Publications

As applications for extreme ultraviolet (EUV) radiation have been identified, the demand for better optics has also increased. Thorium and thorium oxide thin films (19 to 61 nm thick) were RF-sputtered and characterized using atomic force microscopy (AFM), spectroscopic ellipsometry, low-angle x-ray diffraction (LAXRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near edge structure (XANES) in order to assess their capability as EUV reflectors. Their reflectance and absorption at different energies were also measured and analyzed at the Advanced Light Source in Berkeley. The reflectance of oxidized thorium is reported between 2 and 32 nm at 5, 10, and 15 …


Patterning Polymer Thin Films: Lithographically Induced Self Assembly And Spinodal Dewetting, Regina C. Carns May 2004

Patterning Polymer Thin Films: Lithographically Induced Self Assembly And Spinodal Dewetting, Regina C. Carns

Pomona Senior Theses

In an age in which the microchip is ubiquitous, the rewards for novel methods of microfabrification are great, and the vast possibilities of nanotechnology lie just a little ahead. Various methods of microlithography offer differing benefits, and even as older techniques such as optical lithography are being refined beyond what were once considered their upper limits of resolution, new techniques show great promise for going even further once they reach their technological maturity. Recent developments in optical lithography may allow it to break the 100-nm limit even without resorting to x-rays.