Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

Astrophysics

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 287

Full-Text Articles in Physical Sciences and Mathematics

Unraveling The Physics Of Quasar Jets Using Hst Polarimetry, Devon Clautice May 2024

Unraveling The Physics Of Quasar Jets Using Hst Polarimetry, Devon Clautice

Theses and Dissertations

We present a multiwavelength study of three high-power FR II (quasar) jets -- 3C 273, PKS 0637-752, and 1150+497 -- with an emphasis on new high-quality Hubble Space Telescope (HST) optical polarimetry and Chandra X-ray Observatory imaging. Relativistic jets from active galactic nuclei transport energy and mass from the supermassive black hole’s accretion region out to Megaparsec-scale lobes, with effects that feedback into galaxy formation and cluster energetics. We build on recent work which has called into question our fundamental understanding of FR II jet physics, and suggest that highly-efficient particle acceleration must be taking place in situ …


Temporal And Spectral Analysis Of 1es 2344+514 In Two Flaring States Observed By Veritas, Connor Poggemann Dec 2023

Temporal And Spectral Analysis Of 1es 2344+514 In Two Flaring States Observed By Veritas, Connor Poggemann

Physics

VERITAS observed the bright blazar 1ES 2344+514 during two flaring periods, one from Dec. 17 to Dec. 18, 2015 (MJD 57373-57374) with a peak flux of ~60% of the Crab and another from Nov. 28 to Dec. 3, 2021 (MJD 59546-59551) with a peak flux of ~20% of the Crab. This blazar, located at a redshift of z = 0.044, is classified as an extreme high-frequency-peaked BL Lacertae object (HBL). It is known to be variable, including several previous day-scale flares: Whipple on Dec. 20, 1995, VERITAS on Dec. 7, 2007, and MAGIC on Aug. 11, 2016. The VERITAS near-nightly …


Improving Inferences About Exoplanet Habitability, Risinie D. Perera, Kevin H. Knuth Nov 2023

Improving Inferences About Exoplanet Habitability, Risinie D. Perera, Kevin H. Knuth

Physics Faculty Scholarship

Assessing the habitability of exoplanets (planets orbiting other stars) is of great importance in deciding which planets warrant further careful study. Planets in the habitable zones of stars like our Sun are sufficiently far away from the star so that the light rays from the star can be assumed to be parallel, leading to straightforward analytic models for stellar illumination of the planet’s surface. However, for planets in the close-in habitable zones of dim red dwarf stars, such as the potentially habitable planet orbiting our nearest stellar neighbor, Proxima Centauri, the analytic illumination models based on the parallel ray approximation …


An Introduction To The Veritas Observatory, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer Oct 2023

An Introduction To The Veritas Observatory, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer

Annual Student Research Poster Session

Located at the base of Mount Hopkins, Arizona, at an elevation of approximately 4200 feet, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground-based gamma ray observatory containing four Cherenkov telescopes designed to detect very high energy gamma rays with energies ranging from 100GeV to 10TeV using the Imaging Atmospheric Cherenkov Technique. In April 2007, VERITAS began successful operations with all four telescopes. As of today, over 15 years of data has been taken by the VERITAS array, stored in an archive of data, and used for a wide variety of research, publications, PhD theses, and conventions …


Analysis Of The Crab Nebula And Pulsar, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer Oct 2023

Analysis Of The Crab Nebula And Pulsar, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer

Annual Student Research Poster Session

Although the Crab Nebula is well understood, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) still regularly observes the Crab's highest energy emissions. These emissions are used to calibrate the telescopes, further, document the system, and investigate the validity of physical models. Our research this summer is geared to analyze data from 2018-2022 to add to an ongoing research project investigating the long term variability of the Crab Nebula’s emission.


Sub-Chandrasekhar Type Ia Supernovae Scenarios With Increased Pathways For Neutronization, Fernando Hernan Rivas May 2023

Sub-Chandrasekhar Type Ia Supernovae Scenarios With Increased Pathways For Neutronization, Fernando Hernan Rivas

Doctoral Dissertations

Type Ia supernovae are thermonuclear explosions of white dwarfs (WD), electron-degenerate cores of old intermediate mass stars(under 8$M_{\odot}$). Reaching energies of $10^{51}$\si{\erg}, they outshine whole galaxies as they synthesize and distribute most of the iron group elements (IGE; V, Cr, Mn, Fe, Co, Ni) into the interstellar medium, thus being one of the main agents in cosmic chemical evolution. Also, given their notably homogeneous lightcurves, they form the last step in the cosmic distance ladder outdistancing Cepheid variables by orders of magnitude. Though calibration of said lightcurves is dependent on a high number of confirmed events, the limits of statistical …


Identifying And Analyzing Multi-Star Systems Among Tess Planetary Candidates Using Gaia, Katie E. Bailey May 2023

Identifying And Analyzing Multi-Star Systems Among Tess Planetary Candidates Using Gaia, Katie E. Bailey

Electronic Theses and Dissertations

Exoplanets represent a young, rapidly advancing subfield of astrophysics where much is still unknown. It is therefore important to analyze trends among their parameters to learn more about these systems. More complexity is added to these systems with the presence of additional stellar companions. To study these complex systems, one can employ programming languages such as Python to parse databases such as those constructed by TESS and Gaia to bridge the gap between exoplanets and stellar companions. Data can then be analyzed for trends in these multi-star exoplanet systems and in juxtaposition to their single-star counterparts. This research was able …


The Search For Heavily Obscured Active Galactic Nuclei In The Local Universe, Ross Silver May 2023

The Search For Heavily Obscured Active Galactic Nuclei In The Local Universe, Ross Silver

All Dissertations

Active galactic nuclei (AGN) are supermassive black holes (SMBHs) in the center of galaxies that accrete surrounding gas and emit across the entire electromagnetic spectrum. They are the most energetic persistent emitters in the Universe, capable of outshining their host galaxies despite their emission originating from a region smaller than our Solar System. AGN were some of the first sources discovered that helped teach us that there were galaxies outside of our own, and they proved the existence of black holes. Moreover, AGN can give us valuable insights into other branches of astrophysics. For example, they can be used to …


Exploring The Dependence Of Bulges In Spiral Galaxies On Their Environment, William Jackson Clark May 2023

Exploring The Dependence Of Bulges In Spiral Galaxies On Their Environment, William Jackson Clark

Physics Theses & Dissertations

Recent research has shown a relationship between spiral galaxy satellite populations and the size of spiral bulges. The modern cosmological model of our universe (ΛCDM), does not predict this. Instead, ΛCMD predicts that only the total dynamical mass of a host galaxy should be correlated with satellite populations. We investigate this relationship in regimes other than satellites. In this study we compare the bulge to total mass ratios of spiral galaxies to the number of nearby galaxies within “n” Mpc. We use four papers from literature that calculate bulge to total mass ratios of 189 spiral galaxies using …


The Loneliest Galaxies In The Universe: A Gama And Galaxy Zoo Study On Void Galaxy Morphology., Lori E. Porter May 2023

The Loneliest Galaxies In The Universe: A Gama And Galaxy Zoo Study On Void Galaxy Morphology., Lori E. Porter

College of Arts & Sciences Senior Honors Theses

The large-scale structure (LSS) of the Universe is comprised of galaxy filaments, tendrils, and voids. The majority of the Universe’s volume is taken up by these voids, which exist as underdense, but not empty, regions. The galaxies found inside voids are void galaxies and expected to be some of the most isolated objects in the Universe. However, their standard morphology remains poorly studied. This study, using the Galaxy and Mass Assembly (GAMA) data and Galaxy Zoo survey, aims to remedy this. For completeness purposes, we use void galaxies identified by Alpaslan et al. (2014) with stellar masses (M*) of 10 …


Analysis Of A Controlled Approximation For Explicit Integrations Of Stiff Thermonuclear Networks, Nicholas Brey May 2023

Analysis Of A Controlled Approximation For Explicit Integrations Of Stiff Thermonuclear Networks, Nicholas Brey

Masters Theses

The current standard method to solve stiff coupled differential equations relies on implicit integration methods. Explicit methods are generally avoided due to the extremely small and limiting timesteps they allow when the equations are stiff. However, implicit methods are computationally expensive because of the complex calculations that need to be done at each time step. An explicit integration method can do these calculations quicker and, if allowed to take comparable timesteps to the implicit ones, would allow the entire calculation to be done faster. Previous work by Dr. Guidry, Dr. Endeve, Dr. Hix and Dr. Billings has shown that, in …


Optimal Method For Reconstructing Polychromatic Maps From Broadband Observations With An Aysmmetric Antenna Pattern, Brianna Cantrall, Emory F. Bunn, Solomon Quinn Apr 2023

Optimal Method For Reconstructing Polychromatic Maps From Broadband Observations With An Aysmmetric Antenna Pattern, Brianna Cantrall, Emory F. Bunn, Solomon Quinn

Honors Theses

Broadband time-ordered data obtained from telescopes with a wavelength-dependent, asymmetric beam pattern can be used to extract maps at multiple wavelengths from a single scan. This technique is especially useful when collecting data on cosmic phenomena such as the Cosmic Microwave Background (CMB) radiation, as it provides the ability to separate the CMB signal from foreground contaminants. We develop a method to determine the optimal linear combinations of wavelengths (“colors”) that can be reconstructed for a given telescope design and the number of colors that are measurable with high signal-to-noise ratio. The optimal colors are found as eigenvectors of a …


Measurement Of Near-Threshold Proton Branching Ratios In 31s Important For Novae, Sudarsan Balakrishnan Jan 2023

Measurement Of Near-Threshold Proton Branching Ratios In 31s Important For Novae, Sudarsan Balakrishnan

LSU Doctoral Dissertations

Classical novae are stellar explosions that contribute to the nucleosynthesis of isotopes on the proton-rich side of the valley of stability up to 40Ca. In ONe novae, the incompletely understood reaction rate of 30P(p,γ)31S is known to strongly influence the production rate of several stable isotopes such as 30Si, 31P, and 32,33,34S. A precise measurement of this reaction rate has several potential implications towards matching astrophysical observables to the physical composition of the nova site -- the observed elemental abundance ratios of O/S and S/Al have been suggested as useful `thermometers' to gauge …


Dirac Dark Matter, Neutrino Masses, And Dark Baryogenesis, Diego Restrepo, Andrès Rivera, Walter Tangarife Sep 2022

Dirac Dark Matter, Neutrino Masses, And Dark Baryogenesis, Diego Restrepo, Andrès Rivera, Walter Tangarife

Physics: Faculty Publications and Other Works

We present a gauged baryon number model as an example of models where all new fermions required to cancel out the anomalies help to solve phenomenological problems of the standard model (SM). Dark fermion doublets, along with the isosinglet charged fermions, in conjunction with a set of SM-singlet fermions, participate in the generation of small neutrino masses through the Dirac-dark Zee mechanism. The other SM-singlets explain the dark matter in the Universe, while their coupling to an inert singlet scalar is the source of the CP violation. In the presence of a strong first-order electroweak phase transition, this “dark” CP …


Reverberation Mapping Of Markarian 421 Using V,R, I, And Ha Filters, Alex Whitman Aug 2022

Reverberation Mapping Of Markarian 421 Using V,R, I, And Ha Filters, Alex Whitman

Honors Program Theses and Projects

Active Galactic Nuclei (AGN) at their most basic level are supermassive blackholes that emit light. While that sounds paradoxical, it speaks volumes to how little we know about these extraordinary objects. One technique that can be used, and was used here to better understand these objects is reverberation mapping. We employed this method on the AGN Markarian 421 (Mrk 421) at Bridgewater State University (BSU). Mrk 421 was chosen because it is the brightest known AGN, averaging 12.7 magnitudes, and the observational abilities of BSU are best suited for objects brighter than 18 magnitudes in optical wavelengths. We observed Mrk …


Monitoring The M-Dwarf Host Stars Of Tess Exoplanet Candidates: Stellar Flares And Habitability, Ashley Lieber May 2022

Monitoring The M-Dwarf Host Stars Of Tess Exoplanet Candidates: Stellar Flares And Habitability, Ashley Lieber

Physics Undergraduate Honors Theses

In the search for life beyond our solar system, the study of M-dwarfs has become increasingly important due to their unique characteristics including their small size, flaring capabilities, and long lifespans. Their small size allows for exoplanet detection due to observable gravitational interactions, and the stellar flares could potentially trigger prebiotic life on exoplanets in the system. Lastly, their long lifespans may provide the conditions necessary to foster prebiotic life and the development of more complex organisms over time. Flare rate is a critical factor in determining the habitability of the exoplanet due to its potential to damage or incubate …


Electromagnetic Detectability Of Binary Supermassive Black Holes, Kaylee Grace May 2022

Electromagnetic Detectability Of Binary Supermassive Black Holes, Kaylee Grace

Honors Scholar Theses

Supermassive black hole (SMBH) binaries can be produced by galaxy mergers and are important sources of gravitational waves. Although several binary candidates have been identified in previous work, none have yet been fully confirmed. These pairs are difficult to detect, since single accreting SMBHs can have pseudo-periodic lightcurves due to stochastic noise that can mimic the signature of binary SMBHs. The aforementioned lightcurves are the detections we classify as ”false-positive.” The Vera Rubin Observatory (VRO) will be a powerful new tool for detecting binary SMBHs. We determine the false-positive binary detection rate for VRO by attempting to recover sinusoidal binary …


Signal Yields And Detector Modeling In Xenon Time Projection Chambers, And Results Of An Effective Field Theory Dark Matter Search Using Lux Data, Gregory Ransford Carl Rischbieter May 2022

Signal Yields And Detector Modeling In Xenon Time Projection Chambers, And Results Of An Effective Field Theory Dark Matter Search Using Lux Data, Gregory Ransford Carl Rischbieter

Legacy Theses & Dissertations (2009 - 2024)

The nature of dark matter continues to be one of the biggest remaining mysteries in physics. Astrophysical measurements indicate that dark matter makes up more than a quarter of the Universe's total energy density, and it is well-motivated that dark matter is comprised of Weakly Interacting Massive Particles (WIMPs). Direct detection techniques utilizing liquid and gaseous noble elements have become the primary method of probing the potential non-gravitational interactions between WIMPs and Standard Model matter, with the leading technology being the dual-phase Time Projection Chamber (TPC). The Large Underground Xenon (LUX) and its second-generation successor, LUX-ZEPLIN (LZ), are two xenon …


Physical Properties Of Brackett Emitters In The Apogee Dr17 Catalog, Elliott Khilfeh, Hunter Campbell, Kevin R. Covey, Marina Kounkel, Richard Ballentyne Apr 2022

Physical Properties Of Brackett Emitters In The Apogee Dr17 Catalog, Elliott Khilfeh, Hunter Campbell, Kevin R. Covey, Marina Kounkel, Richard Ballentyne

WWU Honors College Senior Projects

In the process of accumulating mass (accretion), young stars channel ionized gas from the protoplanetary disk to the stellar surface along magnetic field lines. Upon impacting the photosphere, the gas cools down, recombining and emitting hydrogen spectral lines. Measuring these emission lines allows us to determine the temperature and density of the gas in those accretion streams. This then enables us to test whether those parameters depend on the accretion rate. We present measurements of equivalent widths and line ratios for Brackett (Br) 11 – 20 lines for 3366 observations of 940 pre-main sequence stars observed with APOGEE as of …


Dayside Auroral Activity, Aine Merritt, Gerard J. Fasel Mar 2022

Dayside Auroral Activity, Aine Merritt, Gerard J. Fasel

Seaver College Research And Scholarly Achievement Symposium

The dayside aurora is greatly influenced by the solar wind. Many different types of dayside auroral features have been identified, including poleward-moving auroral forms (PMAFs), throat aurora, shock aurora, and diffuse aurora. This study looks at the dayside auroral activity using the BACC ground-based all-sky-cameras located in both Longyearbyen (Kjell Henriksen Observatory) and Ny-Alesund, Svalbard. There are times when PMAFs peel off the dayside auroral oval in an ordered fashion, elongated east-west arcs moving poleward. At other times, the dayside aurora displays arcs that have extreme brightening moving through the arcs as they exhibit swirls and become a bit chaotic …


Characterizing Agn Influence On The Calculated Metallicities Of Adjacent Star-Forming Spaxels, Aidan Khelil Jan 2022

Characterizing Agn Influence On The Calculated Metallicities Of Adjacent Star-Forming Spaxels, Aidan Khelil

Honors Papers

In this thesis, I introduce a method to identify and characterize the effects of active galactic nuclei (AGN) on the spectra of nearby star-forming regions. I analyze spatially-resolved areas of galaxies called “spaxels” within Data Release 15 of the Sloan Digital Sky Survey (SDSS) with the goal of locating those which are physically close to AGN. I find those spaxels with calculated metallicities which lie adjacent to AGN-flagged spaxels and characterize their metallicity values relative to the spaxels which are not adjacent to AGN-flagged spaxels, using a total of 11 separate metallicity calibrations. I find that the current methods to …


Accretion Onto A Black Hole At The Center Of A Neutron Star: Nuclear Equations Of State, Sophia Christina Schnauck Jan 2022

Accretion Onto A Black Hole At The Center Of A Neutron Star: Nuclear Equations Of State, Sophia Christina Schnauck

Honors Projects

A recent re-examination of Bondi accretion (see Richards, Baumgarte and Shapiro (2021)) revealed that, for stiff equations of state (EOSs), steady-state accretion can only occur for accretion rates exceeding a certain minimum. To date, this result has been explored only for gamma-law equations of state. Instead, we consider accretion onto a small black hole residing at the center of a neutron star governed by a more realistic nuclear EOS. We generalize the relativistic Bondi solution for such EOSs, approximated by piecewise polytropes, and thereby obtain analytical expressions for the accretion rates which were reflected in our numerical simulations. After taking …


Toward Deep Learning Emulators For Modeling The Large-Scale Structure Of The Universe, Neerav Kaushal Jan 2022

Toward Deep Learning Emulators For Modeling The Large-Scale Structure Of The Universe, Neerav Kaushal

Dissertations, Master's Theses and Master's Reports

Multi-billion dollar cosmological surveys are being conducted almost every decade in today’s era of precision cosmology. These surveys scan vast swaths of sky and generate tons of observational data. In order to extract meaningful information from this data and test these observations against theory, rigorous theoretical predictions are needed. In the absence of an analytic method, cosmological simulations become the most widely used tool to provide these predictions in order to test against the observations. They can be used to study covariance matrices, generate mock galaxy catalogs and provide ready-to-use snapshots for detailed redshift analyses. But cosmological simulations of matter …


Brown Dwarf Atmospheres At High Cadence And Spectral Resolution: A Speed Limit On Brown Dwarf Rotation And A Spectroscopic Atlas Of A 1050 K Atmosphere, Megan E. Tannock Dec 2021

Brown Dwarf Atmospheres At High Cadence And Spectral Resolution: A Speed Limit On Brown Dwarf Rotation And A Spectroscopic Atlas Of A 1050 K Atmosphere, Megan E. Tannock

Electronic Thesis and Dissertation Repository

Brown dwarfs are sub-stellar objects that form like stars but are not sufficiently massive to sustain hydrogen fusion in their cores. Characterized by cool, molecule-rich atmospheres, brown dwarfs demonstrate great diversity in spectroscopic appearance and share many properties with giant exoplanets. In this thesis I present two investigations: the first is a detailed photometric and spectroscopic study of the three most rapidly rotating brown dwarfs. The second examines a spectrum of a cool brown dwarf at unprecedented spectral resolution and signal-to-noise ratio to study the accuracy of theoretical model photospheres.

Photometric monitoring of brown dwarfs has revealed that periodic variability …


Nnetfix: An Artificial Neural Network-Based Denoising Engine For Gravitational-Wave Signals, Kentaro Mogushi, Ryan Quitzow-James, Marco Cavaglià, Sumeet Kulkarni, Fergus Hayes Sep 2021

Nnetfix: An Artificial Neural Network-Based Denoising Engine For Gravitational-Wave Signals, Kentaro Mogushi, Ryan Quitzow-James, Marco Cavaglià, Sumeet Kulkarni, Fergus Hayes

Faculty and Student Publications

Instrumental and environmental transient noise bursts in gravitational-wave (GW) detectors, or glitches, may impair astrophysical observations by adversely affecting the sky localization and the parameter estimation of GW signals. Denoising of detector data is especially relevant during low-latency operations because electromagnetic follow-up of candidate detections requires accurate, rapid sky localization and inference of astrophysical sources. NNETFIX is a machine learning, artificial neural network-based algorithm designed to estimate the data containing a transient GW signal with an overlapping glitch as though the glitch was absent. The sky localization calculated from the denoised data may be significantly more accurate than the sky …


Accretion And Debris Disc Dynamics Around Single And Higher-Order Star Systems, Jeremy L. Smallwood May 2021

Accretion And Debris Disc Dynamics Around Single And Higher-Order Star Systems, Jeremy L. Smallwood

UNLV Theses, Dissertations, Professional Papers, and Capstones

My research deals with highly topical areas of astrophysics, such as planet habitability, stellar evolution, the origin of fast radio bursts, the evolution of debris discs, and the dynamics of accretion discs in binary and higher-order star systems. Accretion discs around binary star systems are ubiquitous in the galaxy and planet formation is thought to occur within these discs. Circumbinary discs are commonly observed to be misaligned with respect to the binary orbital plane. A misaligned circumbinary disc eventually evolve to a stable orientation, either coplanar or polar with the binary orbital plane. The process of disc alignment has important …


Expanding Band Parameter Analysis Methods For Hed Meteorites And V-Type Asteroids, Noah Adm Haverkamp Frere May 2021

Expanding Band Parameter Analysis Methods For Hed Meteorites And V-Type Asteroids, Noah Adm Haverkamp Frere

Masters Theses

Vesta and Vesta-like asteroids have been convincingly linked, through visible and near-infrared (VNIR; 0.7 - 2.5 µm [micron]) spectral analysis, to a clan of basaltic achondritic meteorites – howardites, eucrites, and diogenites (HEDs). VNIR reflectance spectra of V-type asteroids and HED meteorites have two absorption features centered near 1 µm (Band I) and 2 µm (Band II) caused primarily by Fe2+ [iron] and Ca2+ [calcium] cations in pyroxene. Previous studies have shown a correlation between the mol% Fs and Wo with the central wavelengths of Band I and Band II, hereafter called Band I Center (BIC) and Band …


Formation Of Supermassive Black Holes In The Early Universe, Arpan Das Apr 2021

Formation Of Supermassive Black Holes In The Early Universe, Arpan Das

Electronic Thesis and Dissertation Repository

The aim of the work presented in this thesis is to understand the formation and growth of the seeds of the supermassive black holes in early universe. Supermassive black holes (SMBH) with masses larger than 108MSun have been observed when the Universe was only 800 Myr old. The formation and accretion history of the seeds of these supermassive black holes are a matter of debate. We consider the scenario of massive seed black hole formation which allows gas to directly collapse into a black hole (DCBH) of similar mass. Considering this scenario, we show that the mass …


Comparing Dust In Other Galaxies To Dust In Our Galaxy, Fatima Elkhatib Apr 2021

Comparing Dust In Other Galaxies To Dust In Our Galaxy, Fatima Elkhatib

Senior Theses

Interstellar dust in galaxies has a profound effect on the galaxies’ light output and apparent properties as well as on the physical processes connected to star formation. Therefore, to understand the true properties of the galaxies around us, it is important to understand the dust in those galaxies and compare it to the dust in our galaxy. To do this, we study the effects of dust on background quasars by analyzing interstellar reddening and extinction. It has been shown that many quasars look redder and dimmer than the average quasar when observing them from Earth, due to the dust in …


All-Sky Search In Early O3 Ligo Data For Continuous Gravitational-Wave Signals From Unknown Neutron Stars In Binary Systems, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, K. E. Ramirez, W. H. Wang Mar 2021

All-Sky Search In Early O3 Ligo Data For Continuous Gravitational-Wave Signals From Unknown Neutron Stars In Binary Systems, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, K. E. Ramirez, W. H. Wang

Physics and Astronomy Faculty Publications and Presentations

Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, BinarySkyHough pipeline. The search analyzes the most sensitive frequency …