Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

Aerospace, Physics, and Space Science Faculty Publications

Methods: Numerical

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Efficient Geometric Probabilities Of Multi-Transiting Exoplanetary Systems From Corbits, Joshua Brakensiek, Darin Ragozzine Apr 2016

Efficient Geometric Probabilities Of Multi-Transiting Exoplanetary Systems From Corbits, Joshua Brakensiek, Darin Ragozzine

Aerospace, Physics, and Space Science Faculty Publications

NASA’s Kepler Space Telescope has successfully discovered thousands of exoplanet candidates using the transit method, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, it is essential to account for the unique geometric probabilities of detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods, we have constructed an efficient, semi-analytical algorithm called the Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems (CORBITS), which, given a collection of conjectured exoplanets orbiting a star, computes the probability that …


The Emergence Of Negative Superhumps In Cataclysmic Variables: Smoothed Particle Hydrodynamics Simulations, David M. Thomas, Matt A. Wood Apr 2015

The Emergence Of Negative Superhumps In Cataclysmic Variables: Smoothed Particle Hydrodynamics Simulations, David M. Thomas, Matt A. Wood

Aerospace, Physics, and Space Science Faculty Publications

Negative superhumps are believed to arise in cataclysmic variable systems when the accretion disk is tilted with respect to the orbital plane. Slow retrograde precession of the line-of-nodes results in a signal—the negative superhump—with a period slightly less than the orbital period. Previous studies have shown that tilted disks exhibit negative superhumps, but a consensus on how a disk initially tilts has not been reached. Analytical work by Lai (1999, ApJ, 524, 1030) suggests that a magnetic field on the primary can lead to a tilt instability in a disk when the dipole moment is offset in angle from the …


The Role Of Cross-Shock Potential On Pickup Ion Shock Acceleration In The Framework Of Focused Transport Theory, Pingbing Zuo, Ming Zhang, Hamid K. Rassoul Oct 2013

The Role Of Cross-Shock Potential On Pickup Ion Shock Acceleration In The Framework Of Focused Transport Theory, Pingbing Zuo, Ming Zhang, Hamid K. Rassoul

Aerospace, Physics, and Space Science Faculty Publications

The focused transport theory is appropriate to describe the injection and acceleration of low-energy particles at shocks as an extension of diffusive shock acceleration (DSA). In this investigation, we aim to characterize the role of cross-shock potential (CSP) originated in the charge separation across the shock ramp on pickup ion (PUI) acceleration at various types of shocks with a focused transport model. The simulation results of energy spectrum and spatial density distribution for the cases with and without CSP added in the model are compared.With sufficient acceleration time, the focused transport acceleration finally falls into the DSA regime with the …


Acceleration Of Low-Energy Ions At Parallel Shocks With A Focused Transport Model, Pingbing Zuo, Ming Zhang, Hamid K. Rassoul Apr 2013

Acceleration Of Low-Energy Ions At Parallel Shocks With A Focused Transport Model, Pingbing Zuo, Ming Zhang, Hamid K. Rassoul

Aerospace, Physics, and Space Science Faculty Publications

We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of accelerated particles …


Galactic Cosmic-Ray Modulation In A Realistic Global Magnetohydrodynamic Heliosphere, Xi Luo, Ming Zhang, Hamid K. Rassoul, Nikolai V. Pogorelov, Jacob Heerikhuisen Feb 2013

Galactic Cosmic-Ray Modulation In A Realistic Global Magnetohydrodynamic Heliosphere, Xi Luo, Ming Zhang, Hamid K. Rassoul, Nikolai V. Pogorelov, Jacob Heerikhuisen

Aerospace, Physics, and Space Science Faculty Publications

To understand the behavior of cosmic-ray modulation seen by the two Voyager spacecraft in the region near the termination shock (TS) and in the heliosheath at a distance of >100 AU, a realistic magnetohydrodynamic global heliosphere model is incorporated into our cosmic-ray transport code, so that the detailed effects of the heliospheric boundaries and their plasma/magnetic geometry can be revealed. A number of simulations of cosmic-ray modulation performed with this code result in the following conclusions. (1) Diffusive shock acceleration by the TS can significantly affect the level of cosmic-ray flux and, in particular, its radial gradient profile in the …


The Physical Origin Of Negative Superhumps In Cataclysmic Variables, Matt A. Wood, Christopher J. Burke Jun 2007

The Physical Origin Of Negative Superhumps In Cataclysmic Variables, Matt A. Wood, Christopher J. Burke

Aerospace, Physics, and Space Science Faculty Publications

It has been suspected for over 20 years that the observed negative superhumps in cataclysmic variables are due to the retrograde precession of a tilted disk. We present new smooth particle hydrodynamics simulation results that demonstrate that the source of the modulation of the luminosity of the light in a negatively superhumping cataclysmic variable is the transit of the bright spot across the face of an accretion disk that is tilted out of the orbital plane. In an untilted disk the bright spot is always located on the outer edge of the disk, and the intrinsic brightness of the accretion …


Galactic Cosmic-Ray Modulation Using A Solar Minimum Mhd Heliosphere: A Stochastic Particle Approach, Bryan M. Ball, Ming Zhang, Hamid K. Rassoul, Timur J. Linde Dec 2005

Galactic Cosmic-Ray Modulation Using A Solar Minimum Mhd Heliosphere: A Stochastic Particle Approach, Bryan M. Ball, Ming Zhang, Hamid K. Rassoul, Timur J. Linde

Aerospace, Physics, and Space Science Faculty Publications

An example of Galactic cosmic-ray modulation in a fully three-dimensional heliosphere is presented here. We use a stochastic particle method to solve for modulation without requiring symmetric boundaries or fields. We include all typical modulation terms, including full three-dimensional drift. We have applied this to an MHD heliosphere appropriate for solar minimum conditions. This field includes nonradial solar wind velocity components, as well as a built-in nonspherical termination shock. Parameters that are of interest in modulation can be analyzed in detail, particularly the momentum change of cosmic rays during their transport through the heliosphere. We show radial profiles of modulation …


Time Series Energy Production In Smoothed Particle Hydrodynamics Accretion Disks: Superhumps In The Am Canum Venaticorum Stars, James C. Simpson, Matt A. Wood Oct 1998

Time Series Energy Production In Smoothed Particle Hydrodynamics Accretion Disks: Superhumps In The Am Canum Venaticorum Stars, James C. Simpson, Matt A. Wood

Aerospace, Physics, and Space Science Faculty Publications

The energy production time series of our purely hydrodynamic accretion disk simulations display remarkable similarities with the observed light curves of dwarf novae superhumps in general and the AM CVn stars in particular. The superhump period excess as a function of mass ratio agrees well with earlier theoretical and numerical results, and the amplitudes and relative phases of the harmonics in the power spectra agree well with the observations. The morphology of the mean pulse profile appears to be a useful predictor of system mass ratio. Our modified smoothed particle hydrodynamics code time symmetrizes the interparticle forces when individual time …