Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

Embry-Riddle Aeronautical University

Publications

2017

Gravity waves

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Nonlinear Gravity Wave Forcing As A Source Of Acoustic Waves In The Mesosphere, Thermosphere, And Ionosphere, J. B. Snively Dec 2017

Nonlinear Gravity Wave Forcing As A Source Of Acoustic Waves In The Mesosphere, Thermosphere, And Ionosphere, J. B. Snively

Publications

Numerical simulations demonstrate theoretical predictions that gravity waves with short periods (∼4–8 min) in the mesosphere and lower thermosphere may force secondary acoustic waves, with harmonic periods (∼2-4 minutes), that can reach detectable amplitudes in the thermosphere and ionosphere. The mechanism is through their vertical fluxes of vertical momentum, which lead to forcing as they are disrupted by varying stratification or instability. This is shown likely to occur where horizontally or radially opposing gravity waves interact at large amplitudes, such as above large convective sources, and after overturning. Evanescence and reflection of the waves can lead to further enhancements of …


Gw170817: Observation Of Gravitational Waves From A Binary Neutron Star Inspiral, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al. Oct 2017

Gw170817: Observation Of Gravitational Waves From A Binary Neutron Star Inspiral, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 × 104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M⊙, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17–1.60 M⊙, with the total …


Gw170814: A Three-Detector Observation Of Gravitational Waves From A Binary Black Hole Coalescence, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, Michele Zanolin, Et Al. Oct 2017

Gw170814: A Three-Detector Observation Of Gravitational Waves From A Binary Black Hole Coalescence, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, Michele Zanolin, Et Al.

Publications

On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲ 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5 + 5.7 − 3.0 M ⊙ and 25.3 + 2.8 − 4.2 M ⊙ (at the 90% credible level). The luminosity distance of the source is 540 + 130 − 210 Mpc, corresponding …