Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Galaxy evolution

2012

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Energetic Galaxy-Wide Outflows In High-Redshift Ultraluminous Infrared Galaxies Hosting Agn Activity, C. M. Harrison, D. M. Alexander, A. M. Swinbank, Ian Smail, S. Alaghband-Zadeh, F. E. Bauer, S. C. Chapman, A. Del Moro, R. C. Hickox Oct 2012

Energetic Galaxy-Wide Outflows In High-Redshift Ultraluminous Infrared Galaxies Hosting Agn Activity, C. M. Harrison, D. M. Alexander, A. M. Swinbank, Ian Smail, S. Alaghband-Zadeh, F. E. Bauer, S. C. Chapman, A. Del Moro, R. C. Hickox

Dartmouth Scholarship

We present integral field spectroscopy observations, covering the [O III]4959,5007 emission-line doublet of eight high-redshift (z=1.4-3.4) ultra-luminous infrared galaxies (ULIRGs) that host Active Galactic Nuclei (AGN) activity, including known sub-millimetre luminous galaxies (SMGs). The targets have moderate radio luminosities that are typical of high-redshift ULIRGs (L(1.4GHz)=10^(24)-10^(25)W/Hz) and therefore are not radio-loud AGN. We de-couple kinematic components due to the galaxy dynamics and mergers from those due to outflows. We find evidence in the four most luminous systems (L([O III])>~10^(43)erg/s) for the signatures of large-scale energetic outflows: extremely broad [O III] emission (FWHM ~ 700-1400km/s) across ~4-15kpc, with high velocity …


Star Formation In Self-Gravitating Disks In Active Galactic Nuclei. Ii. Episodic Formation Of Broad-Line Regions, Jian-Min Wang, Pu Du, Jack A. Baldwin, Jun-Qiang Ge, Chen Hu, Gary J. Ferland Feb 2012

Star Formation In Self-Gravitating Disks In Active Galactic Nuclei. Ii. Episodic Formation Of Broad-Line Regions, Jian-Min Wang, Pu Du, Jack A. Baldwin, Jun-Qiang Ge, Chen Hu, Gary J. Ferland

Physics and Astronomy Faculty Publications

This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into …