Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Extending The Reach Of Directional Dark Matter Experiments Through Novel Detector Technologies, Nguyen S. Phan Dec 2016

Extending The Reach Of Directional Dark Matter Experiments Through Novel Detector Technologies, Nguyen S. Phan

Physics & Astronomy ETDs

Dark matter is believed to comprise over 80% of the matter in the Universe. Its composition could be in the form of weakly interacting massive particles (WIMPs), which are predicted by extensions of the Standard Model, namely supersymmetric theories. Even though hints of its existence were detected in astronomical observations over eighty years ago, its detection through means other than the gravitational influence on observable luminous matter still eludes us.

Currently, there are many ongoing direct detection experiments, that aim to measure the signals left by the elastic scattering of WIMPs with nuclei in the detector target material. The detection …


Probing Dark Matter-Neutrino Connection Via Indirect Detection Experiments, Bradley Knockel Nov 2016

Probing Dark Matter-Neutrino Connection Via Indirect Detection Experiments, Bradley Knockel

Physics & Astronomy ETDs

Various evidence reveals that dark matter is a primary component of this universe. The amount of dark matter is known, but its identity is a mystery. To determine its properties, efforts to detect and produce dark matter are underway. Dark matter annihilations throughout the galaxy may produce photons, neutrinos, and cosmic rays. Neutrino and photon detectors may then indirectly detect dark matter by detecting these annihilation products. The annihilation rate, dark matter mass, and dark matter scattering rate off of matter affect the signals received at Earth. These signals can therefore probe the identity of dark matter, especially if dark …


Dependence Of Gama Galaxy Halo Masses On The Cosmic Web Environment From 100 Deg2 Of Kids Weak Lensing Data., Margot M. Brouwer, Marcello Cacciato, Andrej Dvornik, Lizzie Eardley, Catherine Heymans, Henk Hoekstra, Konrad Kuijken, Tamsyn Mcnaught-Roberts, Cristobal Sifon, Massimo Viola, Mehmet Alpaslan, Maciej Bilicki, Joss Bland-Hawthorn, Sarah Brough, Ami Choi, Simon P. Driver, Thomas Erben, Aniello Grado, Hendrik Hildebrandt, Benne W. Holwerda, Andrew M. Hopkins, Jelte T. A. De Jong, Jochen Liske, John Mcfarland, Reiko Nakajima, Nicola R. Napolitano, Peder Norberg, John A. Peacock, Mario Radovich, Aaron S. G. Robotham, Peter Schneider, Gert Sikkema, Edo Van Uitert, Gijs Verdoes Kleijn, Edwin A. Valentijn Nov 2016

Dependence Of Gama Galaxy Halo Masses On The Cosmic Web Environment From 100 Deg2 Of Kids Weak Lensing Data., Margot M. Brouwer, Marcello Cacciato, Andrej Dvornik, Lizzie Eardley, Catherine Heymans, Henk Hoekstra, Konrad Kuijken, Tamsyn Mcnaught-Roberts, Cristobal Sifon, Massimo Viola, Mehmet Alpaslan, Maciej Bilicki, Joss Bland-Hawthorn, Sarah Brough, Ami Choi, Simon P. Driver, Thomas Erben, Aniello Grado, Hendrik Hildebrandt, Benne W. Holwerda, Andrew M. Hopkins, Jelte T. A. De Jong, Jochen Liske, John Mcfarland, Reiko Nakajima, Nicola R. Napolitano, Peder Norberg, John A. Peacock, Mario Radovich, Aaron S. G. Robotham, Peter Schneider, Gert Sikkema, Edo Van Uitert, Gijs Verdoes Kleijn, Edwin A. Valentijn

Faculty Scholarship

Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy–galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using ∼100deg2" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">∼100deg2∼100deg2

of overlapping data from the Kilo-Degree Survey. In …


The Mass Discrepancy Acceleration Relation In Early-Type Galaxies: Extended Mass Profiles And The Phantom Menace To Mond, Joachim Janz, Michele Cappellari, Aaron Romanowsky, Luca Ciotti, Adebusola Alabi, Duncan Forbes Sep 2016

The Mass Discrepancy Acceleration Relation In Early-Type Galaxies: Extended Mass Profiles And The Phantom Menace To Mond, Joachim Janz, Michele Cappellari, Aaron Romanowsky, Luca Ciotti, Adebusola Alabi, Duncan Forbes

Faculty Publications

The dark matter (DM) haloes around spiral galaxies appear to conspire with their baryonic content: empirically, significant amounts of DM are inferred only below a universal characteristic acceleration scale. Moreover, the discrepancy between the baryonic and dynamical mass, which is usually interpreted as the presence of DM, follows a very tight mass discrepancy acceleration (MDA) relation. Its universality, and its tightness in spiral galaxies, poses a challenge for the DM interpretation and was used to argue in favour of MOdified Newtonian Dynamics (MOND). Here, we test whether or not this applies to early-type galaxies. We use the dynamical models of …


First Results From The Madcash Survey: A Faint Dwarf Galaxy Companion To The Low-Mass Spiral Galaxy Ngc 2403 At 3.2 Mpc*, Jeffrey Carlin, David Sand, Paul Price, Beth Willman, Ananthan Karunakaran, Kristine Spekkens, Eric Bell, Jean Brodie, Denija Crnojević, Duncan Forbes, Jonathan Hargis, Evan Kirby, Robert Lupton, Annika Peter, Aaron Romanowsky, Jay Strader Jan 2016

First Results From The Madcash Survey: A Faint Dwarf Galaxy Companion To The Low-Mass Spiral Galaxy Ngc 2403 At 3.2 Mpc*, Jeffrey Carlin, David Sand, Paul Price, Beth Willman, Ananthan Karunakaran, Kristine Spekkens, Eric Bell, Jean Brodie, Denija Crnojević, Duncan Forbes, Jonathan Hargis, Evan Kirby, Robert Lupton, Annika Peter, Aaron Romanowsky, Jay Strader

Faculty Publications

No abstract provided.