Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Physics and Astronomy Faculty Publications

2013

Magnetic fields

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Estimations Of The Magnetic Field Strength In The Torus Of Ic 5063 Using Near-Infrared Polarimetry, E. Lopez-Rodriguez, C. Packham, S. Young, Moshe Elitzur, N. A. Levenson, R. E. Mason, C. Ramos Almeida, A. Alonso-Herrero, T. J. Jones, E. Perlman May 2013

Estimations Of The Magnetic Field Strength In The Torus Of Ic 5063 Using Near-Infrared Polarimetry, E. Lopez-Rodriguez, C. Packham, S. Young, Moshe Elitzur, N. A. Levenson, R. E. Mason, C. Ramos Almeida, A. Alonso-Herrero, T. J. Jones, E. Perlman

Physics and Astronomy Faculty Publications

An optically and geometrically thick torus obscures the central engine of active galactic nuclei (AGN) from some lines of sight. From a magnetohydrodynamical framework, the torus can be considered to be a particular region of clouds surrounding the central engine where the clouds are dusty and optically thick. In this framework, the magnetic field plays an important role in the creation, morphology and evolution of the torus. If the dust grains within the clouds are assumed to be aligned by paramagnetic alignment, then the ratio of the intrinsic polarization and visual extinction, P(per cent)/Av, is a …


Strongly Localized Magnetization Modes In Permalloy Antidot Lattices, J. Sklenar, V. S. Bhat, Lance E. De Long, O. Heinonen, J. B. Ketterson Apr 2013

Strongly Localized Magnetization Modes In Permalloy Antidot Lattices, J. Sklenar, V. S. Bhat, Lance E. De Long, O. Heinonen, J. B. Ketterson

Physics and Astronomy Faculty Publications

Antidot lattices (ADLs) patterned into soft magnetic thin films exhibit rich ferromagnetic resonance (FMR) spectra corresponding to many different magnetization modes. One of the predicted modes is highly localized at the edges of the antidots; this mode is difficult to detect experimentally. Here we present FMR data for a permalloy thin film patterned into a square array of square antidots. Comparison of these data with micromagnetic simulations permits identification of several edge modes. Our simulations also reveal the effect of the antidot shape on the mode dispersion.