Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Physics and Astronomy Faculty Publications

2013

Cosmology theory

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Molecular Hydrogen Regulated Star Formation In Cosmological Smoothed Particle Hydrodynamics Simulations, Robert Thompson, Kentaro Nagamine, Jason Jaacks, Jun-Hwan Choi Dec 2013

Molecular Hydrogen Regulated Star Formation In Cosmological Smoothed Particle Hydrodynamics Simulations, Robert Thompson, Kentaro Nagamine, Jason Jaacks, Jun-Hwan Choi

Physics and Astronomy Faculty Publications

Some observations have shown that star formation (SF) correlates tightly with the presence of molecular hydrogen (H2); therefore, it is important to investigate its implication on galaxy formation in a cosmological context. In the present work, we implement a sub-grid model (hereafter H2-SF model) that tracks the H2 mass fraction within our cosmological smoothed particle hydrodynamics code GADGET-3 by using an equilibrium analytic model of Krumholz et al. This model allows us to regulate the SF in our simulation by the local abundance of H2 rather than the total cold gas density, which naturally …


Supermassive Black Hole Formation At High Redshifts Via Direct Collapse: Physical Processes In The Early Stage, Jun-Hwan Choi, Isaac Shlosman, Mitchell C. Begelman Aug 2013

Supermassive Black Hole Formation At High Redshifts Via Direct Collapse: Physical Processes In The Early Stage, Jun-Hwan Choi, Isaac Shlosman, Mitchell C. Begelman

Physics and Astronomy Faculty Publications

We use numerical simulations to explore whether direct collapse can lead to the formation of supermassive black hole (SMBH) seeds at high redshifts. Using the adaptive mesh refinement code ENZO, we follow the evolution of gas within slowly tumbling dark matter (DM) halos of Mvir ~ 2 × 108 M and Rvir ~ 1 kpc. For our idealized simulations, we adopt cosmologically motivated DM and baryon density profiles and angular momentum distributions. Our principal goal is to understand how the collapsing flow overcomes the centrifugal barrier and whether it is subject to fragmentation which can potentially …