Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Physics & Astronomy Faculty Research

Planets and satellites: Formation

Publication Year

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Kozai–Lidov Oscillations Triggered By A Tilt Instability Of Detached Circumplanetary Discs, Rebecca G. Martin, Zhaohuan Zhu, Philip J. Armitage, Chao-Chin Yang, Hans Baehr Jan 2021

Kozai–Lidov Oscillations Triggered By A Tilt Instability Of Detached Circumplanetary Discs, Rebecca G. Martin, Zhaohuan Zhu, Philip J. Armitage, Chao-Chin Yang, Hans Baehr

Physics & Astronomy Faculty Research

Circumplanetary discs can be linearly unstable to the growth of disc tilt in the tidal potential of the star–planet system. We use 3D hydrodynamical simulations to characterize the disc conditions needed for instability, together with its long-term evolution. Tilt growth occurs for disc aspect ratios, evaluated near the disc outer edge, of H/r ≳ 0.05, with a weak dependence on viscosity in the wave-like regime of warp propagation. Lower mass giant planets are more likely to have circumplanetary discs that satisfy the conditions for instability. We show that the tilt instability can excite the inclination to above the threshold where …


The Evolution Of A Circumplanetary Disc With A Dead Zone, Cheng Chen, Chao Chin Yang, Rebecca G. Martin, Zhaohuan Zhu Nov 2020

The Evolution Of A Circumplanetary Disc With A Dead Zone, Cheng Chen, Chao Chin Yang, Rebecca G. Martin, Zhaohuan Zhu

Physics & Astronomy Faculty Research

© 2021 Oxford University Press. All rights reserved. We investigate whether the regular Galilean satellites could have formed in the dead zone of a circumplanetary disc. A dead zone is a region of weak turbulence in which the magnetorotational instability is suppressed, potentially an ideal environment for satellite formation. With the grid-based hydrodynamic code FARGO3D, we examine the evolution of a circumplanetary disc model with a dead zone. Material accumulates in the dead zone of the disc leading to a higher total mass and but a similar temperature profile compared to a fully turbulent disc model. The tidal torque increases …


The Disk Substructures At High Angular Resolution Project (Dsharp). I. Motivation, Sample, Calibration, And Overview, Sean M. Andrews, Jane Huang, Laura M. Pérez, Andrea Isella, Cornelis P. Dullemond, Nicolás T. Kurtovic, Viviana V. Guzmán, John M. Carpenter, David J. Wilner, Shangjia Zhang, Zhaohuan Zhu, Tilman Birstiel, Xue-Ning Bai, Myriam Benisty, A. Meredith Hughes, Karin I. Öberg, Luca Ricci Dec 2018

The Disk Substructures At High Angular Resolution Project (Dsharp). I. Motivation, Sample, Calibration, And Overview, Sean M. Andrews, Jane Huang, Laura M. Pérez, Andrea Isella, Cornelis P. Dullemond, Nicolás T. Kurtovic, Viviana V. Guzmán, John M. Carpenter, David J. Wilner, Shangjia Zhang, Zhaohuan Zhu, Tilman Birstiel, Xue-Ning Bai, Myriam Benisty, A. Meredith Hughes, Karin I. Öberg, Luca Ricci

Physics & Astronomy Faculty Research

We introduce the Disk Substructures at High Angular Resolution Project (DSHARP), one of the initial Large Programs conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The primary goal of DSHARP is to find and characterize substructures in the spatial distributions of solid particles for a sample of 20 nearby protoplanetary disks, using very high resolution (~0 035, or 5 au, FWHM) observations of their 240 GHz (1.25 mm) continuum emission. These data provide a first homogeneous look at the small-scale features in disks that are directly relevant to the planet formation process, quantifying their prevalence, morphologies, spatial scales, spacings, symmetry, …


The Disk Substructures At High Angular Resolution Project (Dsharp). Ii. Characteristics Of Annular Substructures, Jane Huang, Sean M. Andrews, Cornelis P. Dellemond, Andrea Isella, Laura M. Pérez, Viviana V. Guzmán, Karin I. Öberg, Zhaohuan Zhu, Shangjia Zhang, Xue-Ning Bai, Myriam Benisty, Tilman Birstiel, John M. Carpenter, A. Meredith Hughes, Luca Ricci, Erik Weaver, David J. Wilner Dec 2018

The Disk Substructures At High Angular Resolution Project (Dsharp). Ii. Characteristics Of Annular Substructures, Jane Huang, Sean M. Andrews, Cornelis P. Dellemond, Andrea Isella, Laura M. Pérez, Viviana V. Guzmán, Karin I. Öberg, Zhaohuan Zhu, Shangjia Zhang, Xue-Ning Bai, Myriam Benisty, Tilman Birstiel, John M. Carpenter, A. Meredith Hughes, Luca Ricci, Erik Weaver, David J. Wilner

Physics & Astronomy Faculty Research

The Disk Substructures at High Angular Resolution Project (DSHARP) used ALMA to map the 1.25 mm continuum of protoplanetary disks at a spatial resolution of ~5 au. We present a systematic analysis of annular substructures in the 18 single-disk systems targeted in this survey. No dominant architecture emerges from this sample; instead, remarkably diverse morphologies are observed. Annular substructures can occur at virtually any radius where millimeter continuum emission is detected and range in widths from a few astronomical units to tens of astronomical units. Intensity ratios between gaps and adjacent rings range from near-unity to just a few percent. …


The Disk Substructures At High Angular Resolution Project (Dsharp). Vii. The Planet–Disk Interactions Interpretation, Shangjia Zhang, Zhaohuan Zhu, Jane Huang, Viviana V. Guzmán, Sean M. Andrews, Tilman Birnstiel, Cornelis P. Dullemond, John M. Carpenter, Andrea Isella, Laura M. Pérez, Myriam Benisty, David J. Wilner, Clément Baruteau, Xue-Ning Bai, Luca Ricci Dec 2018

The Disk Substructures At High Angular Resolution Project (Dsharp). Vii. The Planet–Disk Interactions Interpretation, Shangjia Zhang, Zhaohuan Zhu, Jane Huang, Viviana V. Guzmán, Sean M. Andrews, Tilman Birnstiel, Cornelis P. Dullemond, John M. Carpenter, Andrea Isella, Laura M. Pérez, Myriam Benisty, David J. Wilner, Clément Baruteau, Xue-Ning Bai, Luca Ricci

Physics & Astronomy Faculty Research

The Disk Substructures at High Angular Resolution Project (DSHARP) provides a large sample of protoplanetary disks with substructures that could be induced by young forming planets. To explore the properties of planets that may be responsible for these substructures, we systematically carry out a grid of 2D hydrodynamical simulations, including both gas and dust components. We present the resulting gas structures, including the relationship between the planet mass, as well as (1) the gaseous gap depth/width and (2) the sub/super-Keplerian motion across the gap. We then compute dust continuum intensity maps at the frequency of the DSHARP observations. We provide …


The Disk Substructures At High Angular Resolution Project (Dsharp). V. Interpreting Alma Maps Of Protoplanetary Disks In Terms Of A Dust Model, Tilman Birnstiel, Cornelis P. Dullemond, Zhaohuan Zhu, Sean M. Andrews, Xue-Ning Bai, David J. Wilner, John M. Carpenter, Jane Huang, Andrea Isella, Myriam Benisty, Laura M. Pérez, Shangjia Zhang Dec 2018

The Disk Substructures At High Angular Resolution Project (Dsharp). V. Interpreting Alma Maps Of Protoplanetary Disks In Terms Of A Dust Model, Tilman Birnstiel, Cornelis P. Dullemond, Zhaohuan Zhu, Sean M. Andrews, Xue-Ning Bai, David J. Wilner, John M. Carpenter, Jane Huang, Andrea Isella, Myriam Benisty, Laura M. Pérez, Shangjia Zhang

Physics & Astronomy Faculty Research

The Disk Substructures at High Angular Resolution Project (DSHARP) is the largest homogeneous high-resolution (~0 035, or ~5 au) disk continuum imaging survey with the Atacama Large Millimeter/submillimeter Array (ALMA) so far. In the coming years, many more disks will be mapped with ALMA at similar resolution. Interpreting the results in terms of the properties and quantities of the emitting dusty material is, however, a very non-trivial task. This is in part due to the uncertainty in the dust opacities, an uncertainty that is not likely to be resolved any time soon. It is also partly due to the fact …


Polar Alignment Of A Protoplanetary Disc Around An Eccentric Binary - Ii. Effect Of Binary And Disc Parameters, Rebecca G. Martin, Stephen H. Lubow Jun 2018

Polar Alignment Of A Protoplanetary Disc Around An Eccentric Binary - Ii. Effect Of Binary And Disc Parameters, Rebecca G. Martin, Stephen H. Lubow

Physics & Astronomy Faculty Research

In a recent paper Martin & Lubow showed that a circumbinary disc around an eccentric binary can undergo damped nodal oscillations that lead to the polar (perpendicular) alignment of the disc relative to the binary orbit. The disc angular momentum vector aligns to the eccentricity vector of the binary. We explore the robustness of this mechanism for a low-mass disc (0.001 of the binary mass) and its dependence on system parameters by means of hydrodynamic disc simulations. We describe how the evolution depends upon the disc viscosity, temperature, size, binary mass ratio, orbital eccentricity, and inclination. We compare results with …


The Eccentric Cavity, Triple Rings, Two-Armed Spirals, And Double Clumps Of The Mwc 758 Disk, Ruobing Dong, Sheng-Yuan Liu, Josh Eisner, Sean Andrews, Jeffrey Fung, Zhauhuan Zhu, Eugene Chiang, Jun Hashimoto, Hauyu Baobab Liu, Simon Casassus, Thomas Esposito, Yasuhiro Hasegawa, Takayuki Muto, Yaroslav Pavlyuchenkov, David Wilner, Eiji Akiyama, Motohide Tamura, John Wisniewski Jun 2018

The Eccentric Cavity, Triple Rings, Two-Armed Spirals, And Double Clumps Of The Mwc 758 Disk, Ruobing Dong, Sheng-Yuan Liu, Josh Eisner, Sean Andrews, Jeffrey Fung, Zhauhuan Zhu, Eugene Chiang, Jun Hashimoto, Hauyu Baobab Liu, Simon Casassus, Thomas Esposito, Yasuhiro Hasegawa, Takayuki Muto, Yaroslav Pavlyuchenkov, David Wilner, Eiji Akiyama, Motohide Tamura, John Wisniewski

Physics & Astronomy Faculty Research

Spatially resolved structures in protoplanetary disks hint at unseen planets. Previous imaging observations of the transitional disk around MWC 758 revealed an inner cavity, a ring-like outer disk, emission clumps, and spiral arms, all possibly generated by companions. We present ALMA dust continuum observations of MWC 758 at 0.87 mm wavelength with 43 × 39 mas angular resolution (6.9 × 6.2 au) and 20 μJy beam−1 rms. The central submillimeter emission cavity is revealed to be eccentric; once deprojected, its outer edge can be well fitted by an ellipse with an eccentricity of 0.1 and one focus on the star. …