Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Physics & Astronomy Faculty Research

2021

Accretion

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Gw Ori: Circumtriple Rings And Planets, Jeremy L. Smallwood, Rebecca Nealon, Cheng Chen, Rebecca G. Martin, Jiaqing Bi, Ruobing Dong, Christophe Pinte Sep 2021

Gw Ori: Circumtriple Rings And Planets, Jeremy L. Smallwood, Rebecca Nealon, Cheng Chen, Rebecca G. Martin, Jiaqing Bi, Ruobing Dong, Christophe Pinte

Physics & Astronomy Faculty Research

GW Ori is a hierarchical triple star system with a misaligned circumtriple protoplanetary disc. Recent Atacama Large Millimeter/submillimeter Array observations have identified three dust rings with a prominent gap at 100 au and misalignments between each of the rings. A break in the gas disc may be driven by the torque from either the triple star system or a planet that is massive enough to carve a gap in the disc. Once the disc is broken, the rings nodally precess on different time-scales and become misaligned. We investigate the origins of the dust rings by means of N-body integrations and …


Constraining Protoplanetary Disc Accretion And Young Planets Using Alma Kinematic Observations, Ian Rabago, Zhaohuan Zhu Feb 2021

Constraining Protoplanetary Disc Accretion And Young Planets Using Alma Kinematic Observations, Ian Rabago, Zhaohuan Zhu

Physics & Astronomy Faculty Research

Recent ALMA molecular line observations have revealed 3D gas velocity structure in protoplanetary discs, shedding light on mechanisms of disc accretion and structure formation. (1) By carrying out viscous simulations, we confirm that the disc's velocity structure differs dramatically using vertical stress profiles from different accretion mechanisms. Thus, kinematic observations tracing flows at different disc heights can potentially distinguish different accretion mechanisms. On the other hand, the disc surface density evolution is mostly determined by the vertically integrated stress. The sharp disc outer edge constrained by recent kinematic observations can be caused by a radially varying alpha in the disc. …


Kozai–Lidov Oscillations Triggered By A Tilt Instability Of Detached Circumplanetary Discs, Rebecca G. Martin, Zhaohuan Zhu, Philip J. Armitage, Chao-Chin Yang, Hans Baehr Jan 2021

Kozai–Lidov Oscillations Triggered By A Tilt Instability Of Detached Circumplanetary Discs, Rebecca G. Martin, Zhaohuan Zhu, Philip J. Armitage, Chao-Chin Yang, Hans Baehr

Physics & Astronomy Faculty Research

Circumplanetary discs can be linearly unstable to the growth of disc tilt in the tidal potential of the star–planet system. We use 3D hydrodynamical simulations to characterize the disc conditions needed for instability, together with its long-term evolution. Tilt growth occurs for disc aspect ratios, evaluated near the disc outer edge, of H/r ≳ 0.05, with a weak dependence on viscosity in the wave-like regime of warp propagation. Lower mass giant planets are more likely to have circumplanetary discs that satisfy the conditions for instability. We show that the tilt instability can excite the inclination to above the threshold where …