Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Physics & Astronomy ETDs

Boson sampling

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

On The Complexity Of Boson Sampling Using Atoms In Optical Lattices, Gopikrishnan Muraleedharan Mar 2020

On The Complexity Of Boson Sampling Using Atoms In Optical Lattices, Gopikrishnan Muraleedharan

Physics & Astronomy ETDs

The extended Church-Turing thesis says that any computation that can be done by a physically realizable model of computers can be efficiently computed by the simplest model of classical computer, a Turing machine. Since the introduction of the concept of quantum computers, a central goal has been to find instances where the extended Church- Turing thesis fails. In the current noisy intermediate-scale quantum devices era, one looks for such instances that can be simulated on modest devices of small scale in the presence of noise. In this thesis, we work with one such problem, namely the Boson Sampling problem. We …


Quantum Information In Rydberg-Dressed Atoms, Tyler Emerson Keating Jun 2016

Quantum Information In Rydberg-Dressed Atoms, Tyler Emerson Keating

Physics & Astronomy ETDs

In any physical platform, two ingredients are essential for quantum information processing: single-qubit control, and entangling interactions between qubits. Neutral atoms can be individually controlled with high fidelity and are resilient to environmental noise, making them attractive candidates for implementing quantum information protocols. However, achieving strong interactions remains a major obstacle. One way to increase the interaction strength between neutral atoms is to excite them into high-lying Rydberg states, which exhibit large electric dipole moments (and by extension, strong electric dipole-dipole interactions). By slowly ramping up the Rydberg level coupling in a system, one can "dress'' the atomic ground states …