Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Dartmouth Scholarship

2013

Galaxy nuclei

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Halo Occupation Distribution Of X-Ray-Bright Active Galactic Nuclei: A Comparison With Luminous Quasars, Jonathan Richardson, Suchetana Chatterjee, Zheng Zheng, Adam D. Myers, Ryan Hickox Dec 2013

The Halo Occupation Distribution Of X-Ray-Bright Active Galactic Nuclei: A Comparison With Luminous Quasars, Jonathan Richardson, Suchetana Chatterjee, Zheng Zheng, Adam D. Myers, Ryan Hickox

Dartmouth Scholarship

We perform halo occupation distribution (HOD) modeling of the projected two-point correlation function (2PCF) of high-redshift (z~1.2) X-ray-bright active galactic nuclei (AGN) in the XMM-COSMOS field measured by Allevato et al. The HOD parameterization is based on low-luminosity AGN in cosmological simulations. At the median redshift of z~1.2, we derive a median mass of (1.02+0.21/-0.23)x10^{13} Msun/h for halos hosting central AGN and an upper limit of ~10% on the AGN satellite fraction. Our modeling results indicate (at the 2.5-sigma level) that X-ray AGN reside in more massive halos compared to more bolometrically luminous, optically-selected quasars at similar redshift. The modeling …


Salt Long-Slit Spectroscopy Of Luminous Obscured Quasars: An Upper Limit On The Size Of The Narrow-Line Region?, Kevin N. Hainline, Ryan Hickox, Jenny E. Greene, Adam D. Myers, Nadia L. Zakamska Aug 2013

Salt Long-Slit Spectroscopy Of Luminous Obscured Quasars: An Upper Limit On The Size Of The Narrow-Line Region?, Kevin N. Hainline, Ryan Hickox, Jenny E. Greene, Adam D. Myers, Nadia L. Zakamska

Dartmouth Scholarship

We present spatially resolved long-slit spectroscopy from the Southern African Large Telescope (SALT) to examine the spatial extent of the narrow-line regions (NLRs) of a sample of 8 luminous obscured quasars at 0.10 < z < 0.43. Our results are consistent with an observed shallow slope in the relationship between NLR size and L_[OIII], which has been interpreted to indicate that NLR size is limited by the density and ionization state of the NLR gas rather than the availability of ionizing photons. We also explore how the NLR size scales with a more direct measure of instantaneous AGN power using mid-IR photometry from WISE, which probes warm to hot dust near the central black hole and so, unlike [OIII], does not depend on the properties of the NLR. Using our results as well as samples from the literature, we obtain a power-law relationship between NLR size and L_8micron that is significantly steeper than that observed for NLR size and L_[OIII]. We find that the size of the NLR goes approximately as L^(1/2)_8micron, as expected from the simple scenario of constant-density clouds illuminated by a central ionizing source. We further see tentative evidence for a flattening of the relationship between NLR size and L_8micron at the high luminosity end, and propose that we are seeing a limiting NLR size of 10 - 20 kpc, beyond which the availability of gas to ionize becomes too low. We find that L_[OIII] ~ L_8micron^(1.4), consistent with a picture in which the L_[OIII] is dependent on the volume of the NLR. These results indicate that high-luminosity quasars have a strong effect in ionizing the available gas in a galaxy.