Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Dartmouth Scholarship

2013

Absorption

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Xmm-Newton Spectrum Of A Candidate Recoiling Supermassive Black Hole: An Elusive Inverted P-Cygni Profile, G. Lanzuisi, F. Civano, S. Marchesi, A. Comastri Nov 2013

The Xmm-Newton Spectrum Of A Candidate Recoiling Supermassive Black Hole: An Elusive Inverted P-Cygni Profile, G. Lanzuisi, F. Civano, S. Marchesi, A. Comastri

Dartmouth Scholarship

We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ~6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the …


Multi-Wavelength Observations Of Supernova 2011ei: Time-Dependent Classification Of Type Iib And Ib Supernovae And Implications For Their Progenitors, Dan Milisavljevic, Raffaella Margutti, Alicia M. Soderberg, Giuliano Pignata, Laura Chomiuk, Robert A. Fesen Mar 2013

Multi-Wavelength Observations Of Supernova 2011ei: Time-Dependent Classification Of Type Iib And Ib Supernovae And Implications For Their Progenitors, Dan Milisavljevic, Raffaella Margutti, Alicia M. Soderberg, Giuliano Pignata, Laura Chomiuk, Robert A. Fesen

Dartmouth Scholarship

We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within 1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on the timescale of one week. High-cadence monitoring of this transition suggests that absorption attributable to a high velocity (> 12,000 km/s) H-rich shell is not rare in Type Ib events. Radio observations imply a shock velocity …